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The theme of the 56th Annual Conference of the Mathematical Association of Victoria is Making+Connections. This 
theme is significant since making connections will lead to improvements in mathematics education for teachers and 
students. Connections that are made between levels (e.g., primary and secondary) can help to ease the transition for 
students and expand teachers’ pedagogical repertoires. Furthermore, connections between practitioners and academics 
can deepen both groups’ understandings of the teaching and learning process for mathematics. 

Within the classroom setting, teachers need to help students develop an understanding of different representations of 
mathematical concepts. Students’ comprehension of multiple representations can be supported through the use of a 
variety of materials, tools, and technologies. Beyond developing rich understandings of each mathematical concept or 
topic, it is important to establish strong cross-strand and cross-curricular connections. Additionally, linking curriculum, 
pedagogy, and assessment provides a coherent learning experience for students and thus supports their mathematical 
development. Finally, due to the social nature of working mathematically, student-student and student-teacher 
relationships need to be nurtured in order to provide an ideal setting in which to interact mathematically.

We were pleased to see that the authors who submitted conference papers were attentive to the significant ideas 
that underpin the conference theme of Making+Connections. In addition to the authors’ careful alignment with the 
conference theme, it was encouraging to receive papers on a wealth of mathematical topics (e.g., multiplicative thinking, 
equality) and pedagogies (e.g., flipped learning, inquiry-based learning) that spanned across educational levels from 
early years to secondary. 

We are extremely grateful to the volunteers for their willingness to review the papers within the short time frame given. 
We appreciate their commitment and dedication to supporting the authors, the MAV, and the conference. In particular, 
we thank Ann Downton and the MAV organising committee, together with the MAV staff members Jacqui Diamond 
and Louise Gray. They have worked tirelessly to ensure that this conference and the proceedings contribute to the 
improvement of teaching and learning of mathematics in Victoria. We are sure that the conference will be a success!

Jennifer Hall and Hazel Tan 
Monash University 
Editors

THE REVIEW PROCESS
The editors received 20 papers for blind and peer review. Specifically, eight papers were submitted for the double 
blind review process, in which the identities of author(s) and reviewer were concealed from each other. Two reviewers 
reviewed each of the papers. If they had a differing outcome, the editors reviewed the papers and made a decision 
regarding the outcome. In total, six blind papers were accepted for publication in the proceedings. A further 13 papers 
were submitted for the peer review process, in which non-blinded papers were reviewed by one reviewer each. This 
process resulted in eight papers being accepted for publication in the proceedings.

In total, 22 papers are published in the Mathematical Association of Victoria’s 56th Annual Conference Proceedings 
(four keynote papers, 14 full papers, and four summary papers). There were 18 reviewers involved in the process, all of 
whom provided thoughtful feedback and were outstanding in responding quickly to requests. 

Foreword
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Of the four proficiencies – understanding, fluency, problem solving and reasoning – reasoning is often seen as the ‘gold 
standard’ of mathematics: harder to learn than the other fluencies and only accessible to a minority of learners. An 
alternative view is that mathematical reasoning is an extension of the sort of everyday reasoning that we all engage 
in and so engaging in mathematical reasoning should be accessible to all learners, not just a select few. Research 
evidence shows that, contrary to another popular belief, reasoning is not necessarily dependent on fluency needing to 
be learnt first. In this paper, I examine some of the research into what it means to reason mathematically and suggest 
some practical examples for bringing reasoning into the centre of mathematics lessons in ways that it can happen ‘little 
and often’ in mathematics lessons, and encourage all students to come to develop mathematical reasoning as a ‘habit of 
mind’.

INTRODUCTION
Some years back, when I was teaching at Monash University, I was involved with some action research in a Melbourne 
primary school. We gave the 4th, 5th, and 6th grade students the following three equations to complete. 

	 8 + 4 = [  ] + 5

	 32 + 19 = [  ] + 20

	 68 – 39 = [  ] – 40

The overall success rates on the first two items were 58% and 53% respectively, with many of the incorrect answers 
being the result of students giving answers of 12 and 51, interpreting the open box as simply needing to be filled with the 
answer to the calculation on the left-hand side of the equal side. On the third item, the success rate dropped to 26%. 

In devising these questions, we had hoped that the students would take a reasoning approach to think about answers: 
that 32 + 19 had to be equivalent to 31 + 20 because increasing 19 by 1 to 20 would mean decreasing 32 by 1, to preserve 
the equality, or that the difference between 68 and 39 would be the same as the difference between 69 and 40 because 
increasing the 39 by 1 would mean needing to increase the 69 by 1, to preserve the difference. We thought that engaging 
in such reasoning was not overly challenging and so were surprised by these facility levels, particularly on the third item. 

To try to understand why this subtraction item was proving to be so much more difficult we talked to several of the 
students involved. What becomes clear, through those conversations, was that the vast majority had set about answering 
the questions by carrying out a series of calculations, for example, working out that 32 + 19 was 51 and then figuring 
out what needed to be added to 20 to make 51. The fact that calculating 68 – 39 was harder than calculating either of 
the addition calculations was the main contributing factor to the much lower facility on that item. It seemed that the 
default mode of thinking for these students was ‘calculate first’, an approach that my experience with students elsewhere 
suggests is common. 

Since then, I’ve become increasingly interested in whether, and how, we can help students move from this ‘calculate 
first’ habit of mind, to pausing before calculating, to thinking about the underlying mathematical structures of which 
such questions are particular examples. In other words, developing a ‘reasoning first’ habit of mind’.

CALCULATE OR REASON?
Nunes, Bryant, Sylva, and Barros (2009) make the distinction between arithmetic (“learning how to do sums and using 
this knowledge to solve problems”, p. 3) and mathematical reasoning (“learning to reason about the underlying relations 
in mathematical problems they have to solve”, p. 3). In a series of research studies, Nunes and colleagues have looked at 
the distinction between these and the impact each might have on mathematical attainment and progression. 

Working with 6-year-olds, near the beginning of their schooling, Nunes and colleagues (Nunes et al., 2007) 

Reasoning as a mathematical habit of mind
Mike Askew, University of the Witwatersrand
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demonstrated that the children’s reasoning abilities were good predictors of their performance in mathematics 16 
months later. As part of that study, the researchers also assessed their working memories and general cognitive abilities 
– controlling for each of these showed that the predictive power of the ability to reason mathematically was independent 
of either working memory or general cognitive ability. While the results showed some overlap of the effect of reasoning, 
general cognitive ability and working memory, the authors conclude that it is worth attending to mathematical reasoning 
in its own right.

In later work, Nunes, Bryant, Barros, and Sylva (2012) further explored the question of whether the two different 
abilities - mathematical reasoning and arithmetical skills - make distinct contributions to students’ attainment in 
mathematics, doing so by tracking learning in a five-year longitudinal study. Their overall conclusion from that 
research is that while reasoning and arithmetical abilities do independently contribute to predicting progress in learning 
mathematics, of the two “mathematical reasoning was by far the stronger predictor” (p. 136) and that teaching must 
address improving reasoning skills as well as, and separately to, calculating skills, particularly given that “this study 
provides a clear empirical basis for distinguishing mathematical reasoning as a form of conceptual knowledge and 
knowledge of arithmetic as separate constructs” (p. 153).

Such research showing that students’ ability to reason about mathematical relations is the stronger predictor of later 
mathematical achievement raises the question as to whether differences in attainment in mathematical reasoning 
reveal ‘natural’ differences in mathematical ability, whether they are the result of different experiences, and whether 
reasoning can be taught. To explore this, Nunes et al. (2007) carried out an intervention with a group of six-year-olds to 
see if it were possible to develop their mathematical reasoning. The instructional approach taken included small groups 
working on practical problems that embodied the inverse relationship between addition and subtraction, and pushing for 
reasoning by covering up manipulables, so that children could not count them. The researcher working with the group 
explicitly directed the students to the correct reasoning if they were initially reasoning erroneously. The intervention also 
worked on additive composition, using coins that encouraged reasoning about counting on, and solving one-to-many 
correspondence problems involving two variables (e.g., three lorries are each carrying four tables, how many tables are 
delivered?). 

The students taught in this way were found to progress further in mathematics than a control group, an effect that was 
still in evidence in delayed post-test assessments carried out 13 months later. The authors thus conclude that the learning 
of number facts is not a sufficient basis for early mathematics, and that young children can engage with reasoning about 
number relations (without calculating) and that teaching should address this.

While further research is needed into the impact of explicitly teaching for reasoning, rather than arithmetic, if we believe 
that the majority of students can and should be able to learn a substantial amount of mathematics, then we have to 
assume, until proven wrong, that everyone can improve their ability to reason mathematically and be as successful at that 
as at calculating. We have to engage with how we can help everyone reason mathematically and consider whether our 
teaching is getting the balance right between reasoning and calculating. 

REASONING AS A FIRST RESORT
It is popularly believed that students’ thinking has to have reached a certain ‘stage’ before they can reason 
mathematically, such a view supported by Piaget (1964) and his ‘stages of thinking’ theory in which he argued that 
‘concrete operational’ thinking preceded ‘formal operational’ a stage of thinking that might only be attained by the early 
teen years and that “the ordering of these stages is constant and has been found in all the societies studied” (p. 178). 
Although such ‘stage theory’ is may not be explicitly talked about as much, it does seem still to shape discussions of 
teaching and learning. 

Researchers now think that Piaget got this part of his theory wrong (Claxton, 2015) and that the structures for thinking 
that we use throughout our lives are much in place from an early age, certainly from when we have learned to talk. What 
changes as we get older is the amount we can think about – the quantity – rather than how we actually think about things 
– the quality. Young children can reason about abstract relationships in appropriate contexts. For example, they may not 
be able to answer 3 ÷ 4 presented ‘out of context’ but can find practical ways to share three chocolate bars between four 
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children. A flip side of this critique of ‘stages of thinking’ is the evidence that the need for ‘concrete’ representations 
does not diminish as we grow older, although our awareness of the ‘concreteness’ of our thinking may be hidden in the 
extensive use of linguistic metaphors (Lakoff & Johnson, 1980).

Let us look at an example. Are these statements true or false?

	 3 × 6 = 3 × 5 + 3

	 27 × 40 = 27 × 39 + 27

	 326 × 18 = 327 × 17 + 327

A calculating approach would be to say that 3 × 6 is 18 and 3 × 5 + 3 is also 18, so the two expressions are equal.

A reasoning approach is to consider if there is a way of ‘reading’ the equation in a way that reveals the underlying 
structure of each expression and so lays bare whether or not those structures are equivalent. That raises the question of 
how best to ‘read’ 3 × 6 - as three multiplied by six (three taken six times) or as three times six (six taken three times)? 
A moment’s reflection might suggest that the reading of three multiplied by six helps reveal the connection between 
the two sides of the equation: on the right-hand side, we have six groups of three and on the left-hand side, five groups 
of three, plus another three, so the equality is true. As an aside, such reasoning helps students realise that different 
‘readings’ of mathematical expressions may be helpful in different contexts. That, say, 3.75 × 5 might be better read as 
five lots of 3.75 than as 3.75 lots of 5, but that 3.75 × 12 might be thought of as 3 lots of 12 plus three-quarters of 12, and 
in each case, reasoning leading to an answer more quickly than setting out an algorithm or reaching for a calculator. 

A similar reading of 27 × 40 = 27 × 39 + 27 reveals the same underlying structure: 40 lots of 27 is the same as 39 lots of 
27 plus a further ‘lot’ of 27. This structure is preserved for 326 × 18 = 327 × 17 + 327.

At the time of writing, students in England have to take three national assessments at the end of primary school (when 
they are 11 years old). The first paper comprises a series of pure arithmetical calculations, and the second and third 
papers are deemed to be assessing reasoning (although I would say many of the questions on these two papers are still 
arithmetical questions, now just put into a context). On the 2016 papers, the final question on the third paper started with 
providing the statement that 5542 ÷ 17 = 326. Students were asked to explain how they could use this result to find the 
answer to 326 × 18. 

Given the position of this question being the final item, the test setters presumably assumed that it was the hardest 
question across the three tests. Judging by the success rate on this question, it was the most difficult: Only 26% of pupils 
were able to answer the question correctly, the lowest score on any item across the three tests. However, if one can 
engage in the sort of ‘reading’ and reasoning outlined above, then the only challenge this problem presents is realising 
that 5542 ÷ 17 = 326 tells you that 326 × 17 = 5542: it is then a small step to say that 326 × 18 is going to be 5542 + 326.

We can speculate as to why this question (and others like it) are so poorly answered, and I expect a most likely one is that 
many students tried to carry out some calculations in order to arrive at the answer. Some years ago, Gray and Tall (1994) 
noted differences between students who relied on using a set procedure for calculating and students who could use 
flexible approaches. Not only were the mathematical achievements of the pupils focused on procedures lower than those 
of the flexible thinkers, but also the authors argued that the procedural thinkers actually engaged in a more difficult form 
of mathematics, which contributed to the difference in attainment. In the case of questions like the one discussed above, 
reverting to calculating also makes the mathematics more difficult than it need be.

Looking at the sort of reasoning that supports being able to answer such questions without calculating reveals important 
insights: the identical underlying structure of the three examples above illustrates how, in many instances, the ability to 
reason is independent of the size of the numbers involved and, importantly, independent of being able to actually carry 
out the calculations. The thinking involved in getting an answer does not have to wait until the final year of primary. 
Talking about why 3 × 6 = 3 × 5 + 3 can be done with much younger students, who may well be able to go on to explore 
the similarity of the underlying structure to 27 × 40 = 27 × 39 + 27. Having the mathematics habit of mind of not simply 
reading numerical expressions as ‘instructions to calculate’ but asking ‘what is the general structure of which this 
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is a particular instance?’ could mean students being able to talk and reason about why 326 × 18 = 327 × 17 + 327 is 
necessarily, logically, true, long before they had the knowledge and skills to actually carry out the calculation of  
326 × 18.

REASONING CHAINS
Reasoning chains provide a way of thinking about and strategically working on calculations and discouraging students 
from defaulting to a ‘calculate first’ mindset. Reasoning chains take only around ten minutes to work through, meaning 
that they can be done little and often and so encourage students to develop a ‘reasoning’ habit of mind. 

For maximum impact, reasoning chains have to be designed around three or four number sentences that have been 
chosen to build and connect in some way, through careful variation within and between examples. Many resources 
providing examples for students to work on present a variety of examples to work on, but not all resources pay close 
attention to the variation between examples: although sounding similar, variety and variation promote different learning 
experiences. For example, a page of calculations providing practice in, say, division may be compiled in such a way that, 
although the numbers might get larger or more awkward to work with in later examples, in essence, the examples could 
be re-ordered without the experience of working through them being dramatically changed. Repeated exposure to such 
exercises can result in students coming to think that, having completed a question, it can then be mentally ‘set aside’ in 
turning to the next question.

Variation is different both in the design of exercises and in what students’ attention may be focused on when working 
through the examples. Variation is based on a theory of learning positing that we learn not only from awareness of the 
similarities between things but also the difference, the variation, between examples (Marton & Booth, 1997). Designing 
exercises based in variation means carefully considering the changes from one example to the next and so the order 
of the examples matters. That is done with the intention that the students’ attention is not simply on each individual 
example, but is drawn to the connections, similarities, and differences between the examples: The experience of thinking 
about what is going on across a sequence of examples is greater than just the sum of attending to each example on its 
own. At heart, variation aims to raise student’s awareness that mathematics is a network of interconnected ideas, not a 
random collection of tasks.

A reasoning chain example illustrates how such variation might play out in practice.

	 9 × 12

	 18 × 6

	 3 × 36

The first calculation presented, would, I expect, easily be answered by students, and not a lot of time would need to be 
given over to establishing how the answer was arrived at. A diagram drawn up alongside would be of a 9 by 12 array (on 
the assumption that the students are familiar with arrays and that an open array showing the 9, 12 and 108 is sufficient - 
that they can picture the 96 individual squares that would all be drawn in).

Presenting the second calculation (18 × 6 = ) should, again, not be too challenging. The key pedagogic move is in 
drawing students’ attention to the fact that the answer is the same as the first one and having a conversation is about why 
this might be. Working with the array image, the array sketched out for the first problem can be divided into two 8 by 6 
arrays, and rearranged to create a 16 by 6 array. 

With the third problem (3 × 36 = ), reasoning comes to the fore by asking the students, once it has been established that 
the answer is, once again, 108, to sketch for themselves, what needs to be done to the original array to show why the 
answer is constant. The ‘chain’ can then be brought together by making explicit how each of these is an example of the 
associative law:

	 9 × 12 = 9 × (2 × 6)						       9 × 12 = (3 × 3) × 12

	 9 × (2 × 6) = (9 × 2) × 6						      (3 × 3) × 12 = 3 × (3 x12)

	 (9 × 2) × 6 = 18 × 6						      3 × (3 × 12) = 3 × 36
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As described above, for each of these equivalences it is important to build up images alongside the symbols. This 
embodiment of the underlying mathematical ideas through visual and diagrammatic representations leads to deep 
understanding, together with extended notation. Symbolic representations on their own are often too ‘compact’, simply 
recording the outcome of the underlying mathematical structure, not revealing and making explicit that structure.

SAMPLE REASONING CHAINS

Addition and subtraction

	 54 + 10

	 54 + 30

	 54 + 29

The big idea: the associative rule (54 + 29 = 54 + (20 + 9) = (54 + 20) + 9 or 54 + 29 = 54 + (30 – 1) = (54 + 30) – 1

	 54 – 10

	 54 – 30

	 54 – 29

The big idea: the associative rule (54 – 29 = 54 – (20 + 9) = (54 – 20) – 9 or 54 – 29 = 54 – (30 – 1) = (54 – 30) + 1

Multiplication

	 18 × 10

	 18 × 2

	 18 × 12

The big idea: the distributive rule (18 × 12 = 18 × (10 + 2) = (18 × 10) + (18 × 2)

	 6 × 8

	 12 × 8

	 12 × 16

The big idea: doubling and the associative rule (12 × 8 = (2 × 6) × 8 = 2 × (6 × 8) and 

12 × 16 = 12 × (8 × 2) = (12 × 8) × 2)

CONCLUSION
In the school I talked about at the start of this paper, after 4 weeks of a daily, ten-minute reasoning chain, we re-assessed 
the Grade 4, 5 and 6 students on similar items with the following success rates:

	 9 + 3 = [  ] + 4		  96%

	 44 + 19 = [  ] + 20	 92%

	 56 - 19 = [  ] – 20 	 55%

These are a considerable improvement on the pre-test results, although obviously reasoning about subtraction needed 
further work. However, they show that even in a short time, students can be nudged away from calculating as the 
default towards reasoning about mathematical structure, an important move if we accept Nunes et al.’s (2009) finding 
that “mathematical reasoning, even more so than children’s knowledge of arithmetic, is important for children’s later 
achievement in mathematics” (p. 1).
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Big ideas: Connecting across the 
mathematical curriculum
Mike Askew, University of the Witwatersrand

Teaching and learning mathematics is sometimes treated in a bottom-up approach, by selecting and ordering a number 
of small objectives that, we hope, build to something over time – a little like picking a handful of Lego bricks and seeing 
what you can build from them. Complementary to this is a top-down perspective – knowing in advance what you want 
to build and choosing the bricks appropriately. Thinking about the big ideas in teaching and learning mathematics 
provides this top-down perspective in the mathematics classroom. In this paper, I look at some big ideas in multiplicative 
reasoning as examples of how having the big picture in mind can support teaching that not only focuses on reasoning 
and problem solving, as well as fluency, but also helps develop learning over time by building on, connecting and 
refining ideas, rather than continually introducing new ones.

INTRODUCTION
We know that learning mathematics is more powerful, deep, and lasting when students make connections between 
different mathematical ideas. Yet, teaching often reverts to focusing on ‘topics’, on the content for a particular year 
group, with the assumption that either the ideas will continue to be useful in later years of learning, or that some ideas 
will need to be ‘unlearned’ later. For example, typically we know that, even if not explicitly taught, many students, 
through the choice of examples that they are given, construct erroneous generalisations such as ‘division makes smaller’ 
or ‘to multiply by ten, you add a zero’, both of which do not serve them well when working with rational numbers. Is 
it inevitable that there are such contradictions in learning that need to be overcome or can such ‘bumps in the road’ be 
smoothed out as we go?

I suggest that one way to not only make learning a smoother path but also reduce teaching loads (with the curriculum 
being overloaded with new topics) is to look at threads that run through mathematics as a discipline – threads that might 
inform teaching as a continuity rather than constant accretion of new ideas and that are big ideas.

WHAT IS A BIG IDEA?
There is no agreed definition of ‘big ideas’ but there are certain criteria that, for me, define a big idea in mathematics 
teaching and learning. First, the idea must be big enough to connect seemingly disparate aspects of mathematics, but not 
so big that it is unwieldy. For example, ‘mathematics is all about problem solving’ is a big idea of sorts, but too big to be 
helpful. An idea like ‘fractions, decimals, and percentages are different ways to represent equal quantities’ is a big idea 
that links separate aspects of the curriculum together, yet it is small enough to be thought about in practical terms.

Second, the idea must have currency across many years of schooling because it means that students get to revisit big 
ideas across the year groups. The ideas will grow and develop, but there will be a core of similarity on which learning 
can build. All students can be engaged in thinking about a big idea but perhaps at different developmental levels; 
working with big ideas is a means of dealing with classroom diversity and being inclusive. It is beyond the scope of 
this paper to look at several big ideas, so I illustrate how they might influence teaching by taking the exemplar case 
of multiplicative reasoning. First, I consider why it is important to distinguish between the big ideas of multiplicative 
reasoning and additive reasoning, and then consider some of the ways that we might work on multiplicative reasoning in 
class that help students realise its distinctiveness. Consider these two problems:

I have eight apples in a bag and I put six more apples into the bag. How many apples are there altogether?

I have eight bags and I put six apples into each bag. How many apples are there altogether?

The calculations that model each of these word problems are obvious: 8 + 6 = 14 and 8 × 6 = 48. A little less obvious, 
perhaps, is the number of numbers, including the answer, that there are in each problem. At first sight, it looks as though 
there are three numbers in each: 8, 6, and 14 in the addition and 8, 6, and 48 in the multiplication. There is a subtle fourth 
number included in the multiplication, tucked away in the word ‘each’: the number one. Making this hidden ‘one’ 
explicit reveals that the second problem is a simple, direct ratio problem: 1 bag is to 6 apples as 8 bags is to 48 apples, 
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1:6 as 8:48. We assume that students are not ready to work with ratio and proportion until the upper years of primary, but 
most introductory multiplication problems that students work on in the early primary years are simple ratio problems. 

Rather than work explicitly on the big ideas behind ratio and proportion, we more often introduce multiplication as 
repeated addition, and therein lies a problem. For example, when the item in Figure 1 was given to a representative 
sample (n = 309) of 12- to 13-year-olds (England’s Year 8 of schooling), only 14% could provide a correct answer (Hart, 
1981). Replicating this research with a larger representative sample (n = 754), Küchemann, Hodgen, and Brown (2011) 
only found 12% of students were able to produce a correct answer, with many reasoning, incorrectly, that as 8 + 4 = 12, 
then the answer would be obtained by adding 4 to 9 (i.e., defaulting to additive reasoning rather than multiplicative). 
Evidence from such studies demonstrating that students often resort to thinking additively when they need to be 
reasoning multiplicatively points to the importance of treat additive reasoning as a big idea that is a separate way of 
thinking about situations rather than the big idea of multiplicative reasoning.

			       

Figure 1. Curly Ks item (Hart, 1981).

One reason that students muddy the additive and multiplicative arises from the emphasis on first introducing 
multiplication as repeated addition. There is, of course, a link between multiplication and repeated addition, but it is a 
subtle one. First, there are genuine repeated addition problems. For example, suppose a conference room is set out with 
circular tables that seat 10 people. As people arrived, six sat at one of the tables, another six sat at the next table, and so 
on until eight tables had six people sitting at them. How many people were sitting at tables? Again, this can be modelled 
by 6 × 8. It seems very like the apples in bags problem, but the key difference is that there is no ‘rule’ about how many 
have to sit at each table, in the way that above there was the ‘rule’ that each bag had to contain exactly six apples. In the 
seating situation, it just so happened that the same number of people sat at each table, but it could as easily have been the 
case that five sat at a table, or seven, or whatever. Thinking of the way in which people arrived, the situation was  
6 + 6 + 6 + 6 + 6 + 6 + 6 + 6, not, say, 6 + 8 + 4 + 7 + 6 + 5 + 9 + 6. It just so happened that the sequence of additions 
repeated itself and so lends itself to being more efficiently calculated by multiplication than repeated addition. When 
you look, however, at the problems students most often face when introduced to multiplicative situations, they rarely, if 
ever, are given ‘genuine’ repeated addition problems. They are much more likely to meet simple ratios: There are three 
plates on the table. Each plate has five biscuits on it. How many biscuits are there altogether? Alternatively, there are five 
cars in the carpark. Each car has four wheels. How many wheels are there altogether? As soon as there is an explicit or 
implicit ‘each’ or ‘per’ in a situation, then it is a simple ratio.

A second connection comes from the observation that simple ratio problems can, and will, be solved by students through 
repeated addition, especially if they are only just beginning to learn about multiplication. If they do not know the answer 
to 6 × 8, then students will find the total number of apples in eight bags by repeatedly adding six. We need to be clear and 
not confuse that means of calculating with the understanding: Finding the answer to a multiplicative ratio problem by 
carrying out repeated addition does not turn the problem into a repeated addition situation. 
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WHY DO WE PERSIST IN TEACHING MULTIPLICATION AS AN EXTENSION OF 
ADDITION?
One reason for the persistence in not treating multiplicative relations as being a very different way of seeing the world 
from additive relations is the commonly held belief that counting is the foundation of all number work. In the early years 
of school, counting is very much focused on additive relations. If you have two red counters and six blue counters, then 
students’ attention is largely drawn to looking at the counters in ways that allow them to answer questions like, “How 
many counters are there altogether?” or “How many more blue counters are there than red counters?” It is not until later 
years that we might ask questions like, “How many times larger is the collection of blue counters than the collection of 
red counters?” or “How many times smaller is the collection of red counters than the blue collection?” Such questions 
arise more naturally in measuring contexts, working with continuous quantities: If the jug of water fills four glasses, 
then the relation between the jug and the glasses can be talked about both additively – How many glasses altogether 
make a full jug? – but also multiplicatively – How many times bigger is the jug than a glass? Some writers suggest that 
we have the foundations wrong and that early years mathematics should focus on continuous quantities and measuring 
(Schmittau, 2004). Curricula that have adopted this approach indicate that learning about fractions and algebra is more 
secure for students who have come to mathematics through measuring (Dougherty & Venenciano, 2007). 

Another reason that we may be wedded to counting-as-foundational is the belief that additive reasoning is more ‘natural’ 
than multiplicative reasoning. That may simply be a result of some circularity – We teach additive reasoning prior 
to multiplicative reasoning, so students come to know additive reasoning before multiplicative reasoning. Research 
and cognitive science suggest that we may be just as ‘hard-wired’ to think multiplicatively as we are additively. For 
example, it is well established that when students are asked to put numbers on a number line, they often position the 
numbers closer together as the numbers get larger. Young students filling an empty number line from 0 to 10 will have 
the small numbers wider apart than the numbers close to 10, and older students display a similar propensity asked to put 
the multiples of 10 on a line marked 0 to 100. Then, 10 and 20 will be placed further apart than 80 and 90. It seems that 
students have to overcome this propensity of thinking that numbers get closer together as they get larger (This may still 
be a ‘default’ way of thinking even as adults, since it takes people longer to compare larger numbers than smaller ones, 
controlling for the time taken to read the number). 

There is a logic to this. In multiplicative terms, quantities do get ‘closer’ together as they get larger. For example, 
imagine one person mixing one litre of cordial with two litres of water and another person mixing 10 litres of cordial 
with 11 litres of water. In additive relations terms, the difference between the amount of cordial and water in each case is 
one litre. Thinking about the multiplicative relationship between the cordial and water, then the 10:11 mix is much closer 
to a half-and-half concentration than the 1:2 mix is. Even young children can reason that the two mixes are not going to 
taste the same. 

Dehaene (1999) theorises that this is accounted for by humans, and other animals, mentally storing and comparing 
amounts not as discrete quantities but through some sort of mental ‘accumulator’, which is like imagining two test tubes. 
Pouring one unit of liquid into one (metaphorical) test tube and two units of the same size into the other means that if 
the units are large enough, then it is easy to tell which test tube contains more, simply by looking. Imagine two other, 
identically sized test tubes. You now need to fill these with 10 and 11 units respectively, so the units are going to have 
to be smaller, making it a little more difficult to tell which tube holds the more liquid (hence the longer time needed to 
compare larger numbers) and why, again, 10 may, phenomenologically, seem closer to 11 than 1 does to 2.

This distinction between additive and multiplicative reasoning may only exist in the mind of the person making a 
comparison; it need not exist in two quantities being compared. For example, place value is commonly taught as 
an additive process – exchanging 10 units for one ten, and 10 tens for one hundred. Thinking of place value as a 
multiplicative process – scaling up the unit by a factor of 10, and then scaling up the 10 by a factor of 10 again to make 
a hundred – leads to a very different way of seeing the relationship between the 1 and the 10. This may have different 
implications for how learning progressed. For example, a different sense of where decimals come from is engendered. 
Rather than being seen as a type of fraction, arising from partition a one into 10 equal sub-parts, decimals can be 
understood as an extension of the place value system. A hundred can be imagined to be shrunk to one-tenth of its size, 
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giving a 10. This, in turn, is shrunk to one-tenth of its size, becoming a one. There is no need to stop this shrinking 
process at this point; the one can be shrunk to one-tenth of its size, giving rise to the first decimal place and so on. 
Thinking of place value as enlarging and shrinking (as opposed to adding and separating) is a key distinction, with the 
latter image being important in later years, and being able to be worked on from the beginning of introducing place 
value.

To move to the big idea of multiplicative reasoning as needing to be distinct from additive reasoning, we may need 
to change the models and images that we offer to students to embody mathematical ideas. One image that is showing 
increasing potential is the double number line.

THE DOUBLE NUMBER LINE AS A MODEL FOR MULTIPLICATIVE REASONING
There is growing evidence for the power of using the double number line to model multiplication in the lower secondary 
years to encourage students to move away from thinking additively. Küchemann et al. (2011) provide an example of the 
double number line (Figure 2). 

                                                                           

Figure 2. Double number line for × 1.5 mapping.

Working on this as a model for mapping any number onto Line A onto a corresponding number on Line B brings into 
awareness the general mapping (function) of ×1.5 (or x -> 1.5x or y = 1/5x and so on). 

Presenting different contexts for the origins of this particular double number line can help students think about the 
functional relationship in different ways (National Council of Teachers of Mathematics, 2019). For example, one can 
consider the difference between the double number line representing the number of steps taken by an adult and a child 
walking along a straight path, and the same model representing the conversion rate of US $8 to NZ $12, thus raising 
awareness of the difference between working with discrete and continuous quantities. Moving between representations 
is also possible. Looking at the relationship between the double number line and a straight-line graph opens up further 
understandings about the nature of multiplicative reasoning. Similarly, scales on maps or rulers showing different units 
(e.g., metres and feet, centimetres and inches) provide further examples of double number lines showing multiplicative 
relations.

Küchemann et al. (2011) concluded that some students were able to work productively with the double number line, but 
there were students who had difficulty appreciating the multiplicative structure of the model. 

Is this a developmental issue – that students have to have reached a level of understanding before being able to work 
productively with the double number line – or a consequence of limited experience of the model earlier in their 
schooling? 

Younger students can benefit from working with double number lines. In a review of research in Japan about teaching 
whole-number multiplication to encourage proportional reasoning, Hino and Kato (2019) concluded that primary-aged 
children can work effectively with double number line representations and that the use of such representations “provides 
a means of scaffolding the learning of reasoning proportionally” (p. 135). 

I have been working with contexts giving rise to double number lines with students as young as six years old, orally 
introducing problems like:

A mother frog is jumping along a straight path. To keep up, the baby frog has to take two jumps for every jump the 
mother makes. How many jumps does the baby frog make when the mother has made six jumps?

Modelling this situation with literal adult and child jumps, to make sure everyone has a sense of what is happening, 
students then produce informal representations. The linearity of the context means these representations are usually 
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presented on a single number line image with the smaller jumps drawn within the larger ones. The students then have 
no difficulty with my representing these on two parallel lines. While many have repeatedly counted in twos to arrive at 
an answer, subsequent discussion of extending the line in the imagination so that, say, mother had done 10 or 100 jumps 
leads many students to articulate the functional relationship that the numbers on the bottom line are twice those on the 
top. 

CONCLUSION
Using the double number line as an introduction to the big idea of multiplicative reasoning being based in understanding 
ratio is the distinction made by researchers coming from the traditions of the Freudenthal Institute in Holland and 
the distinction between ‘models of’ and ‘models for’, ultimately leading to tools for thinking (e.g., Van den Heuvel-
Panhuizen, 2002). The development of the big idea of multiplicative reasoning from this perspective is seen as moving 
from students seeing the double line as a model for what they might be working on informally, to constructing and 
using it for themselves as an external ’scaffold’ for thinking about multiplicative relations, then to become a mental tool 
for thinking about such relations. Of course, the double number line is not the only model that students need to meet 
(Arrays, for example, provide different affordances for learning), but it does appear to be a particularly productive model 
to use.

As I hope that I have shown through this example of multiplicative reasoning, thinking about the big ideas underpinning 
mathematical structure and generality can be used to design teaching experiences that bring coherence and continuity to 
developing students’ mathematical understanding. 
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FOSTERING INTUITION IN THE CLASSROOM
Inquiry-based learning, problem solving, challenging tasks, student-centred learning; active learning: These terms are 
commonly used for an approach to learning mathematics which sees the student develop their own understanding as they 
work through a mathematical problem, and such approaches are - quite rightly - widely promoted in our classrooms. 

These approaches give students better chances to experience authentic mathematical experiences as they attempt to 
model real life problems and data. The exact nature of the inquiry can vary greatly, from a more traditional confirmation 
inquiry where the teacher frames questions for the student, usually with a specific pre-determined outcome, on to 
structured and guided inquiry with decreasing levels of scaffolding, through to open inquiry, where students formulate 
their own research question(s). 

There are many rich examples of inquiry based learning resources in mathematics available for teachers and students, 
with varying levels of scaffolding. In the Australian context, there are, among others, reSolve, Maths300, and Maths 
Inside (all supported by AAMT). 

The reSolve protocol makes explicit the importance of providing purposeful, inclusive and challenging tasks within a 
knowledge building culture which celebrates productive struggle and the confidence to take risks (http://resolve.edu.au/
protocol).

Most teachers and resource developers would agree however that student’s ability to engage with inquiry learning often 
requires them to take risks and to build on initial intuitions they may have about the problem. 

The best problems are thus usually seen as being accessible to a range of abilities and levels, what is known as ‘low 
floor, high-ceiling’ tasks. But even a low floor does not always allow students to get started on the problem. Students 
can frequently doubt their intuitions and be afraid to follow them for fear of being wrong. We need to find ways of 
encouraging students to think intuitively, to have a productive disposition towards trying things out. 

Following your intuitions down sometimes blind alleys is a natural part of authentic mathematical enquiry (think for 
example of Andrew Wile’s path to proving Fermat’s last theorem, as immortalised in the book and film by Simon Singh). 
There is a big difference between a ‘wrong guess or thought’, and misconceptions (often ingrained) and mathematical 
errors in say calculations or incorrectly applied procedures. Sadly, I feel students often see these collected under the 
same umbrella of ‘wrong’ and marked with a ‘X’. 

I try to build ‘safe’ classrooms, where students are not afraid to be wrong, where its safe to take risks, exactly because 
being wrong is often what leads to real learning. I believe that we should start this early and start out simple, but also 
that its never too late to start. A simple example I have used at many levels of the curriculum is a ‘pattern-cards’ game, 
where I first show students examples of a series of cards that indicate a pattern, but in the early stages at least the pattern 
they detect might be (deliberately) the wrong one. I do not claim that the game is itself original, I have seen many such 
examples elsewhere. However, what I do wish to highlight is the intent behind the approach. I use it to deliberately 
provoke intuitions which may be wrong, as much as addressing the algebra and patterns content strand within which this 
game is likely positioned.

PATTERN CARDS
There are of course infinite possibilities for the first two turnovers (see images on p. 8), as indeed there are for the third, 
although the latter is usually less obvious to students, wherein lies the opportunity for surprise: 8 is probably the most 
common suggestion for the third turnover, but it could easily be shown as 5 (repeating growing pattern of +1, +2, +1, 
+2..) or many other possibilities. 

From ‘uh-oh’ to ‘ah-ha!’
Greg Oates, The University of Tasmania



THE MATHEMATICAL
ASSOCIATION OF VICTORIA

19

The question of whether students are then sure what the pattern is after the third turnover is interesting. Most people 
will say ‘10’ for the next card (which is what I will turn over) and most will also be convinced that this is now the only 
possibility, so I leave this as a challenge to see if they can come up with an alternative that works. 

The process I promote to the students is:

•	 Say what you think (or believe), make a prediction

•	 Convince yourself, test your answer

•	 Convince a friend or your teacher your answer is correct

•	 Can you prove it? 

Once we have tried a few as a group, I usually encourage the students to design their own patterns, and see if they 
can fool their friends. The challenge is who can devise a pattern that needs the biggest number of cards before their 
partner gets the pattern. The level at which you use this game can be varied, by varying the conceptual complexity of 
the patterns, for example with simple repeating patterns in the early years; introducing the Fibonacci Sequence in the 
middle years, or geometric and arithmetic sequences in later years, or the degree to which you develop the structure of 
the pattern, in for example a verbal description such as doubling in lower years to formulating algebraic rules at higher 
levels.

Psychologically, questions or problems that lead students to intuitively wrong answers can be viewed as setting up 
cognitive dissonance, which can be a powerful motivator for change, if treated in a productive manner (cognitive 
dissonance is also viewed as somewhat traumatic, which reinforces the need for care in developing a safe classroom). 

I first started collecting such problems after trying out two problems in a university foundation mathematics (transition) 
course in 1995. The problems I used then came from a 1991 article I found by Avital and Barbeau called  
‘Intuitively misconceived solutions to problems’ (For the Learning of Mathematics, 11(3)). They provoked intense 
reactions from my students, and ultimately led to my thinking about ‘safe classrooms’. 

There are many famous problems in the history of mathematics which testify to the frequent stumbling path of 
mathematical discovery, but which have ultimately become turning points in our mathematical knowledge, e.g 
the Königsberg Bridge problem which led to Euler’s development of graph theory in 1736 (see the TEDEd talk 
How the Königsberg bridge problem changed mathematics by Dan Van der Vieren: http://www.youtube.com/
watch?v=nZwSo4vfw6c). It is important that we give students a sense that this actually the way mathematics works, and 
provide opportunities for them to experience it for themselves.

For me there is nothing better than those ‘Ah-ha’ moments in the classroom. It’s those moments when we see students’ 
faces light up at the pleasure of solving a problem they have been struggling with. And there is nothing sadder than 
students’ being too scared to try. 

I encourage teachers to start the process of building safe classrooms early on, using tasks that are deliberately designed 
to go against students’ intuitions or beliefs about mathematics they may previously have constructed, but with care to 
always make it clear to your students that being wrong can also be the right way to learn!

Figure 1. Starting cards: 
What could the next card 

be?  Have a guess.

Figure 4. Third turn over: 
Do we know what is next 

now?

Figure 3. Second turn over: 
Were you right? What might 
the next card be now? Are 

you sure?

Figure 2. Now, what could 
the next card be? Make a 

prediction.

?1? ? ? ?1247?124??12? ?
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Myth-busting mathematics
Kate Smith-Miles, University of Melbourne

CHALLENGING STUDENT PERCEPTIONS THAT MATHS IS IRRELEVANT, BORING, 
AND TOO HARD
For mathematics teachers trying to inspire their students to engage and continue with mathematics, there are numerous 
challenges. Student attitudes towards mathematics are formed early (Dowker, Cheriton, Horton, & Mark, 2019), and it 
is sometimes hard to undo deeply engrained perceptions that maths is too hard, boring, and irrelevant to their future. But 
these perception issues must be challenged to ensure each student has equal opportunity for a strong career in a future 
workforce where high level numerical skills and analytical thinking will be essential and assumed (Finkel, 2019).

Calling out these perceptions as myths, and being equipped with arguments and counter-examples, is the best response 
for teachers at the front-line. My YouTube video ‘Myth-busting Mathematics’ (Smith-Miles, 2017) may provide some 
ideas for responding to such student perceptions in your classroom. Fundamentally, the belief that mathematics is 
irrelevant, boring, and a career path that is only suitable for brainy geniuses (and many other misconceptions) often 
stems from two main causes:

Lack of understanding of what mathematics really is, and therefore what it can do. A belief that some people have a 
‘maths brain’ and others do not.

We should start by acknowledging that most people do not understand what mathematics really is. They think they know 
because they have been studying maths since before kindergarten when they learned basic ideas about numbers. Surely 
after more than a decade of studying a subject, you would be entitled to think you have a clear idea of what it is all about! 
Unfortunately, the foundational nature of the mathematics studied at school leads to a belief that mathematics is mostly 
useful for trivial ‘everyday’ applications, like making recipes using ratios, laying brick patterns using geometry, or 
figuring out how to place a ladder against a wall. 

Certainly this message – that maths is important for everyday activities - is important for raising national numeracy 
awareness (although it is often counteracted by parents who unhelpfully point out ‘I hated maths at school, dropped it 
as soon as I could, and have never needed it since!’). But we need to be careful that students don’t believe that everyday 
applications of maths is all that mathematics can do. 

Just as musical scales are preparation for playing great musical works, and grammar provides the foundations for 
literature, the kind of mathematics learned at school is foundational and mere preparation for something more powerful 
that most students do not ever see. How do we expose students to the real power and beauty of more significant 
mathematics, and inspire them to want to learn more, beyond the basic foundations of numeracy?

The future (well-paid) jobs for the current generation of students will demand greater numeracy skills, problem-solving 
and critical, analytical and logical thinking taught only by studying higher levels of mathematics. There is a depth and 
breadth of the field of mathematics that the school curriculum simply can’t explore. We need students to realise that more 
advanced mathematics is important for tackling truly significant problems like managing spread of diseases, improving 
green energy, and designing new products and technologies that will revolutionise our lives (just like mathematics has 
done for centuries). 

The challenges for curriculum design and pedagogy are to ensure the foundations are strengthened for all students (for 
everyday numeracy) while motivating a greater number of students to explore the more creative side of mathematics 
required for careers that build upon advanced mathematics training.

The movie Hidden Figures provides a great example to enable students to imagine how basic concepts explored at 
school (like parabolas and projectile motion) could be extended in more advanced form to solve real-world problems 
of great importance (like ensuring the safe return of astronauts). Certainly, not all school maths topics easily lend 
themselves to this kind of imagined extension. But students can be reassured that each foundational topic extends 
through the rich tree of mathematics, to enable some truly critical problems to be tackled. 
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Good summaries of such applications exist (e.g., https://mathigon.org/applications), but the simplest answer is this: 
mathematics is a language, and we use it to describe our world. With mathematics we can prove facts and estimate 
uncertainties. We can mathematically model a system (e.g., traffic networks, the human brain, stem cells, stock markets), 
then use mathematics to predict what would happen if we make changes, and use more mathematics to decide how 
to improve the system. The opportunities for positive impact – in the corporate world as well as for social good - are 
endless for those who speak this powerful language. They need to learn to speak it fluently!

With this approach we may be able to convince students that it’s important for more people to study advanced 
mathematics, but many students are affected by their belief that they don’t have a ‘maths brain’. Hence we need to tackle 
that misconception too. Early negative experiences with mathematics can be detrimental to student perceptions of their 
maths ability, and while this can affect students of all genders, it is particularly prevalent amongst girls, who seem to 
disengage earlier and in greater numbers than boys (Li & Koch, 2017). There is no evidence that girls perform more 
poorly than boys in mathematics (O’Dea, Lagisz, Jennions, & Nakagawa, 2018), and yet the belief that girls’ brains are 
not as ‘hard-wired’ for mathematics as boys’ brains continues to persist in our society. Given this myth, it should not be 
surprising that there is evidence that girls are less confident than boys in their mathematics ability. Research conducted 
by the Australian Mathematical Sciences Institute has shown that this confidence can be changed with very simple 
intervention exercises (Li & Koch, 2017). The impact of ‘maths anxiety’ (which can be so easily passed down from 
parent to child) and use of mind-shift thinking to increase confidence should inform strategies around teacher training 
and influencing parental attitudes. 

Even if we convince students that there is no such thing as a ‘maths brain’ – that all students can be taught to thinking 
mathematically and problem solve, just as all students can be taught to read and decipher and understand concepts and 
messages discussed in literature – we still need to tackle the perception that only super smart people should progress 
to study higher level mathematics. The Hollywood stereotype of the mathematician is unfortunate indeed: typically a 
male (often mentally-ill) genius who isolates themselves for many years to tackle an impossibly difficult maths problem 
that no-one else in the ‘real world’ really cares about or can understand (such as the portrait of John Nash in A Beautiful 
Mind). This is not a very attractive aspirational goal for most young people! There is an urgent need to communicate 
more effectively about what mathematics really is, its significance for the real world, and to showcase role models who 
are relatable, in order to change student perceptions and attitudes towards mathematics. 

I will discuss such myth-busting in my keynote talk at MAV19 in December, along with classroom suggestions to help 
students see that – far from being a dusty and irrelevant subject – mathematics is an exciting evolving subject. Just 
as it has throughout history, mathematics evolves whenever society faces a challenge, be it an industrial revolution 
or wartime crises. Our society is facing many significant challenges over the coming decades, and new mathematics 
is being developed now to ensure solutions are found to pressing problems in food security, climate change, energy 
efficiency, traffic management, public health, to name just a few. How do we help students understand how maths can 
solve these challenges? That is our challenge as educators. 
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Parental perceptions of NAPLAN results:  
Who is telling the truth?
Linda Cranley, Gregory Hine, Christine Robinson, University of Notre Dame, Australia

Each year across Australia, students in Years 3, 5, 7, and 9 participate in the National Assessment Program – Literacy 
and Numeracy (NAPLAN). The NAPLAN results are reported nationally through summary and national reports, and 
an individual report is provided to parents and caregivers for each student. One dimension of the case study presented 
in this paper explored parents’ perceptions of NAPLAN in mathematics, finding that there was confusion and concern 
over the discrepancy in the results between NAPLAN and school reports. This paper presents findings from a larger case 
study that explored teachers’, parents’, and students’ concerns regarding NAPLAN. This paper presents those findings 
pertaining to parental perspectives of the discrepancies between school reports and NAPLAN results in mathematics 
and the effect these discrepancies have on the parent-school relationship.

INTRODUCTION 
This paper presents findings that emanated from a broader qualitative study investigating the effects NAPLAN has had 
on the teaching and learning of mathematics. The findings presented in this paper pertain to parental perspectives of 
NAPLAN. Overall, the literature available suggests that parents are in favour of NAPLAN testing (Dulfer, Polesal, & 
Rice, 2012). However, there is also evidence to suggest that parents experience some anxiety and confusion in relation 
to NAPLAN. There are two main elements that fuel this anxiety and confusion: (1) media reports that exacerbate the 
high stakes nature of NAPLAN and (2) discrepancies between NAPLAN results and school reports. Dounay (2000) 
and Barksdale-Ladd and Thomas (2000) commented that the importance of standardised testing is often overstated in 
the media for the sake of increasing parents’ interest during the implementation and reporting of high-stakes testing 
results. Dounay (2000) reported that parents became confused and concerned when comparing the results of school 
reports and standardised test results. Parents were perplexed in two ways; firstly, they questioned the performance of the 
school itself. Barksdale-Ladd and Thomas (2000) stated “describing and decrying failing test scores must lead parents to 
questioning their children’s schools” (p. 386). The second form of confusion concerned the results students achieved in 
NAPLAN compared to school reports. In this study, the students’ results in NAPLAN were below the national average 
and the school report had awarded the students above average marks. This caused the parents to question which results 
were accurate and ask, “Who is telling the truth?”

RESEARCH PURPOSE AND SIGNIFICANCE 
The purpose of this research was to investigate how the teaching and learning of mathematics was affected by the 
implementation of national high-stakes testing through NAPLAN. Perspectives from students, classroom teachers 
and parents at one Western Australian Catholic primary school were gathered through interviews. Semi-structured 
interviews (Neuman, 2006) were employed along with researcher-generated field notes. Using these methods, the 
researcher wished to give individual children, their parents and their teachers a voice in sharing their experiences about 
how NAPLAN had affected their relationships with mathematics. In doing so, it was anticipated that following an 
analysis of gathered data and development of key findings, educators could better understand student, teacher and parent 
perceptions about NAPLAN testing which has been identified as an area of need (Belcastro & Boon, 2012). The focus of 
this paper is to examine at depth one of the sub-questions of the study, as outlined below.

KEY RESEARCH QUESTIONS

The key research question for this project was: What is the impact of high-stakes testing on the teaching and learning of 
mathematics in one Western Australian Catholic primary school?

Sub-questions

While there were three sub-questions developed from the key research question, this paper reports exclusively on the 
findings of the following sub-question: What is the impact of high-stakes testing on the understanding of mathematical 
teaching and learning for the parents/guardians of Year 3 and Year 5 students?
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METHODOLOGY 
CASE STUDY

This research was conducted through an intrinsic case study (Stake, 1995) where all data were collected from one triple-
stream Western Australian Catholic primary school. A case study approach was chosen because the researcher wished 
to carry out a detailed investigation over a period of time within a particular context (Neuman, 2006). By involving 
students, parents and teachers from Year 3 and Year 5, the researcher was able to explore the extent to which high-stakes 
testing impacted the teaching and learning of mathematics for these participants. Specifically, the case study design 
enabled the researcher to discern similarities and differences through both Year 3 and Year 5 cohorts for students, 
teachers and parents. 

PARTICIPANTS

The parents, children and teachers involved with the Year 3 and Year 5 classrooms were the key participants in this 
research. Six children from each year group were selected purposively by their classroom teacher prior to sitting 
NAPLAN. To ensure the holistic nature of the research, parents of participating students and the Year 3 and Year 5 
classroom teachers were also interviewed. All interviews were conducted on an individual basis within each group of 
participants.

				           

Students Parents Teachers
Year 3 6 3 3
Year 5 6 3 3

Table 1. Number of participants.

The parent participants were chosen to discern the extent to which their experiences affected their understanding of 
NAPLAN and their relationship with both the teacher and the school. To allow for an appropriate commentary, the 
parents were interviewed shortly after NAPLAN results were disseminated. 

METHODS

As this research dealt with personal experiences of participants involved in NAPLAN testing, it was important to 
use data collection methods that allowed the human elements of the research to be investigated. Consequently, the 
researchers used semi-structured, qualitative interviewing and field notes to collect data. Individual interviews were 
conducted face-to-face with key participants soon after the NAPLAN test had been administered (teachers and students) 
and after the results had been disseminated (parents). The interviews were recorded with a digital device and these 
were transcribed and analysed at a later date. The researcher also took field notes during the interviews to note any 
salient observations or emerging thoughts arising during the interviews. Doing so contributed to both the accuracy and 
trustworthiness of data collected (Babbie, 2016).

DATA ANALYSIS

All qualitative data collected from the student, parent and teacher participants were analysed according to an interactive 
framework offered by Miles, Huberman and Saldaña (2014). This framework comprises of four steps, namely: data 
collection, data reduction, data display, and conclusion drawing/verification. Within each of these components, the 
researcher executed the following operations: coding, memoing, and developing propositions. Miles and Huberman 
(1994) described codes as “tags or labels for assigning units of meaning to the descriptive or inferential information 
compiled during a study” (p. 56). Codes developed a posteriori by the researcher were attached to data gathered via 
interviews and field notes, and were selected from those data based on their meaning. Memoing was then used to 
synthesise coded data so that they formed a recognisable cluster of information anchored in one general concept. Finally, 
the researcher generated propositions about connected sets of statements regarding participants’ perceptions, reflected 
on the findings, and drew conclusions about the study. 
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RESULTS
Within this study, parents of students in Years 3 and 5 were interviewed. Once data were collected and analysed 
three main themes emerged: (i) parents’ understanding of NAPLAN, (ii) the confusion experienced by parents in the 
discrepancy of results between the school reports and NAPLAN results, and (iii) how the relationship between the 
school and parents was affected by NAPLAN. 

PARENTS’ UNDERSTANDING OF NAPLAN

The parents interviewed conveyed a comprehensive understanding of how NAPLAN was implemented, the components 
of the test and the purpose of NAPLAN. The parents also indicated an awareness they would receive an individual report 
of their child’s performance in NAPLAN. One parent participant concisely outlined how the test was implemented: 

Everyone in Australia does the same test at the same time on the same day, everyone does it. And they give 
instructions on how to implement it and they keep it as uniform as possible. This is really for the government.

DISCREPANCY IN SCHOOL REPORTS AND NAPLAN RESULTS

A majority of parents expressed that they became disillusioned and confused by the disparity in the mathematics results 
their children achieved in their school reports and their child’s reported achievements in NAPLAN. Many parents 
doubted the school report as it was evident in the NAPLAN results that the school at which the study was conducted, 
was below the national average in mathematics. Parents also expressed concern about their child’s preparedness for 
secondary school. To illustrate one parent stated:

So what worries me is, is our academic maths class really an academic maths class, when compared with the rest 
of Australia. Maybe our whole level is not right? Maybe we shouldn’t have an academic’s maths class if we’re not 
up there with the academics. I don’t want her going to high school thinking she’s an A student, but when she gets 
there she’s a C.’

This expressed confusion about the school’s grading and reporting system for their mathematics program continued 
throughout the collection of data with another parent citing:

My daughter didn’t perform as well in maths as we thought she would. But I did speak to some other parents about 
it and they were surprised that their child didn’t perform particularly well in maths. But my child sat below the 
school average, which I thought was very surprising as she is in the top maths group.

Parents articulated that before they received their child’s NAPLAN results, they had faith in the school’s ability to report 
and assess their child’s performance in mathematics accurately, but once they had viewed the NAPLAN reports they 
became disillusioned and concerned about the level of mathematics that was taught in the school. One parent indicated 
that she rarely saw mathematics results from the school during the term. This parent’s main confusion was exacerbated 
by her daughter being in the top mathematics class in her year level but having achieved results below the school and 
national average in NAPLAN.

RELATIONSHIP BETWEEN SCHOOL AND PARENTS

The third theme developed was how NAPLAN had affected the relationship between the school and the parents. This 
theme is closely connected to the previous theme as the discrepancy in results had far-reaching effects on the school-
parent relationship. Initially parents were very supportive of the school and its relaxed attitude to NAPLAN. However, 
this attitude changed when the NAPLAN results were released. Some parents questioned their decision to send their 
child to this fee-paying Catholic school rather than the neighbouring government-funded state school which had 
generated better NAPLAN results in mathematics. One parent commented, “I started to think why I am paying for my 
child to go to this school when the school next door is doing better at NAPLAN, they are above the national average.” 

Most parents of Year 5 students indicated that they were very concerned about the poor results the students achieved in 
NAPLAN particularly as these test results are required as part of their child’s application for entry into secondary school. 
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One parent stated:

Well, I just thought if NAPLAN doesn’t mean anything, why are they doing that? They sorta [sic] tell you 
‘Don’t worry about it, it’s just for the national placing’ but to me I think, I don’t want to hand this into the teacher 
knowing that it’s not a true evaluation of my child. I’ve got the primary school that doesn’t worry about it but then 
the high school that does. So if the primary school doesn’t worry about it, it’s not giving my high school a true 
reading. 

Parents also expressed frustration by the lack of information teachers were able to provide them regarding NAPLAN. 
Parents recalled feeling surprised that teachers were not provided with a diagnostic report of their child’s performance in 
NAPLAN. For instance, one parent stated:

I was surprised by my daughter’s results so I went and spoke to her teacher but she said she doesn’t get to see 
individual results, she only gets to see a year group summary, I felt it was a waste of time.

Parental frustration and confusion about NAPLAN clearly had an effect on the relationship between the school and 
the parent. Parents began to lose confidence in the school’s ability to assess and report on their child’s performance in 
mathematics. 

DISCUSSION 
In exploring the sub-question, What is the impact of high-stakes testing on the understanding of mathematical teaching 
and learning for the parents/guardians of Year 3 and Year 5 students?, three themes emerged: (i) parents’ understanding 
of NAPLAN, (ii) the confusion experienced by parents in the discrepancy of results between the school reports and 
NAPLAN results, and (iii) how the relationship between the school and parents was affected by NAPLAN. Overall, the 
parents displayed a very sound understanding of NAPLAN, which is representative of existing literature (Dulfer et al., 
2012).

A significant finding from this study was the confusion and concern that parents displayed in dealing with the 
discrepancy between the school report and NAPLAN results. Douney (2000) stated that many parents doubted the 
validity of standardised testing results when they do not correspond to the school grades. However, in this study, the 
opposite was found. Parents began doubting the validity of the school reports and in addition, expressed concern in the 
ability of the school to report accurately on their child’s mathematical ability. The parents’ discontentment and loss of 
confidence in the school led teachers to be faced with increasing perceived pressure from parents as teachers were forced 
to clarify the discrepancy. This finding led to the final emergent theme, which is the effect NAPLAN has had on the 
school-parent relationship.

There was evidence to indicate that the school-parent relationship was affected negatively by NAPLAN. Originally, 
parents responded favourably to questions about the general mathematical strategies teachers employed at the school 
and to the school’s approach to the implementation of NAPLAN. Overall, parents were content that initially there 
was not much emphasis placed on the importance of NAPLAN by the school; however, this sentiment altered when 
discussing NAPLAN once the results were released. Parents expressed concern about the achievements from one cohort 
to the next; the main concern was that the mathematics results were declining and not improving. Parents then began to 
question the school’s casual response to NAPLAN. The discrepancy in the school reports and NAPLAN results clearly 
affected the school-parent relationship as parents questioned teachers about the results and were not satisfied with 
the explanations they received (Barksdale-Ladd & Thomas, 2000). The use of NAPLAN reports as entry criteria into 
secondary schools also contributed to poor school-parent relationship: One Year 5 teacher stated, “It wasn’t an issue 
when I first started NAPLAN, but since high schools have been asking for the data in the meetings, that’s when I’ve seen 
a change in parents.” It may be asserted that if the implementation of NAPLAN has adversely affected the relationship 
between schools and teachers, that NAPLAN as a tool itself requires further investigation from policy makers.

The final contributing factor that affected the school-parent relationship were media reports associated with NAPLAN. 
This finding accords with those of Freeman, Mathison, and Campbell-Wilcox (2015), who highlighted that the 
relationship between teachers, parents, and schools can be affected and reshaped by reports in the media.
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CONCLUSION
This paper has presented the parental perceptions of NAPLAN that emanated from a larger qualitative study. What 
became clear in these findings was that parents displayed a sound understanding of NAPLAN and its implementation. 
Findings revealed that parents became disillusioned and concerned with the school’s ability to report on their child’s 
mathematical achievements as a discrepancy existed between the school report results in mathematics and the results 
their children achieved in NAPLAN. This discrepancy, along with media reports exacerbating the high-stakes nature of 
NAPLAN, had detrimental effects on the school-parent relationship. 

Implications arising from these findings indicate that schools need to be more proactive in addressing any discrepancies 
between their own reporting of mathematics results and those achieved in NAPLAN. To maintain strong parent-school 
relationships, it is important for schools to articulate clearly how NAPLAN results can complement school reports 
and for schools to report more formatively on children’s achievements and progress. Currently, schools do not receive 
an individual diagnostic NAPLAN report for each student. However, as a recommendation, parents could be invited 
to share their child’s NAPLAN report with the teachers in order to address strengths and weaknesses. What is clear is 
that NAPLAN results need to complement school-based assessments in order to allay parental concerns and to assist 
children’s progress through the mathematics curriculum. If they do not, parents will continue to be left wondering, ‘Who 
is telling the truth?’
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Flipped learning: A mathematics experience 
for Year 9 boys
Penelope Kalogeropoulos, Monash University, and Angela Liyanage, Salesian College

Flipped learning is a pedagogical approach where students are introduced to the learning material before class. 
Classroom time is then used to deepen student understanding through peer discussion and collaborative tasks. This 
innovative pedagogical approach was implemented in mathematics lessons for a Year 9 class of all boys at a school 
in metropolitan Melbourne. Teacher reflections and feedback from students and parents were used to evaluate this 
approach. Students’ engagement and autonomy have increased. Suggestions to improve the flipped learning approach 
have been identified by the teacher.

INTRODUCTION
Flipped learning is more prevalent due to innovations in educational technologies. Bishop and Verleger (2013) define 
the flipped classroom approach as one in which teachers design resources to provide direct computer-based individual 
instruction outside the classroom and interactive group learning tasks inside the classroom. Teachers who use flipped 
learning prepare and/or source pre-lesson materials such as prescribed readings, videos, online activities and screencasts 
for students to explore. The use of these pre-classroom resources allows face-to-face lessons to focus mainly on a 
collaborative working environment.

The flipped learning approach differs from the more traditional approaches through: 

•	 Allocating homework tasks for new content learning, which prepares students for their upcoming mathematics 
lessons, in contrast to revision tasks.

•	 Online learning (e.g., visual presentations, readings, quizzes) is favoured over textbooks and worksheets.

•	 Class time focuses on facilitating learning rather than whole-class instruction. 

(Straw, Quinlan, Harland, & Walker, 2015)

Although there is no single pedagogical model to implement flipped learning (Mercieca, 2018), the Flipped Learning 
Network (FLN, 2014) established by Bergmann and Sams (2012), describe the Four Pillars of FLIP that teachers should 
incorporate into their practice in order to engage in flipped learning. Table 1 provides a summary of what is involved in 
each of the four pillars.

Pillar Characterised by
Flexible Learning Environment •	 Spaces and time frames that permit students to reflect on their learning are 

established.
•	 Educators are flexible in their expectations of student timelines for learning 

and in their assessment of student learning.
Learning Culture •	 Instruction focuses on a learner centred approach.

•	 Students are actively involved in knowledge construction as they participate in 
and evaluate their own learning.

Intentional Content •	 Educators help students develop conceptual understanding and procedural 
fluency.

•	 Concepts used in direct instruction are prioritised for learners to access on their 
own.

Professional Educator •	 Teacher is available to provide real time feedback to individuals, small group 
and class discussion.

•	 Ongoing formative assessment is conducted during class time to inform future 
instruction.

Table 1. Overview of Four Pillars of FLIP (FLN, 2014).
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TECHNOLOGICAL TOOLS FOR FLIPPED LEARNING 

An abundant number of technological tools are being used by teachers in flipped learning (e.g., Matific – an online 
mathematics teaching resource that focuses on improving core skills such as the four processes). Similarly, there are 
various approaches used such as the provision of direct instruction via the use of a prescribed reading or a video recorded 
lecture, to those that allow teachers to individualise learning according to student needs (Attard, 2019). The evolvement 
of new technology provides teachers with opportunities to prepare pre-lesson materials via multimedia and shift students 
from passive learning to active learning.

A CLASSROOM EXPERIENCE OF FLIPPED LEARNING 
SETTING THE SCENE 

Flipped learning was used (by Liyanage) to re-conceptualise traditional secondary mathematics instruction for Year 
9 boys (48 students, 14-15 years old) and provide students with the opportunity to take responsibility for their own 
learning. When flipped learning was first introduced, many students found self-directed learning challenging. As their 
mathematics teacher, I explained to the students my rationale for flipping the classroom, my expectations on viewing the 
videos, taking notes and coming to class with an awareness of the content that we would be discussing and reinforcing in 
class. I chose to share with the students why I was going to flip the classroom so that students would be cognisant of my 
significant investment in the process, from filming and recording the videos to purchasing the equipment to produce the 
content.

EXPERIMENTING WITH RESOURCES

After trialling a number of different programs, the most straightforward method was to screen record using my iPad and 
then upload the videos to Edpuzzle. Edpuzzle allows the editing of videos, the incorporation of formative assessment into 
the videos and it prevents students from skipping the video. I initially uploaded my content to a private YouTube page 
accessible to the students. However, it became difficult to track which student had actually watched the video. Therefore, 
I transferred the videos to Edpuzzle, which offers teachers useful data and analytics on student progress per video. I have 
also established a class notebook on OneNote (Figure 1) where students can find set tasks for the lesson, extra material, 
basic class notes, and the relevant video links.

Figure 1. A snapshot of my class OneNote.
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Implementing the Flipped Classroom

The implementation of a flipped classroom has required me to change the structure of my mathematics lessons. In the 
first 20 minutes of a lesson, the video content is reviewed and discussed, and a set of class notes is developed (Figure 
2). The class notes are derived from the individual notes taken by the students (Figure 3). In the next 20-30 minutes, 
students work on collaborative tasks, while I work with students individually or in small groups. During double period 
of mathematics, I meet with students to focus on reviewing a certain concept. This provides me with an opportunity to 
intervene earlier when a student is experiencing difficulties. My role has somewhat shifted from being a teacher to a 
mentor. As students are working at their own pace, I am able to scaffold their learning according to their needs.

                        

Figure 2. Class notes developed by the students.

                               

Figure 3. Notes that a student made when he watched the video at home.
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RESULTS
The effects of the flipped classroom were evaluated through my own teacher observations and through feedback from 
students and parents.

TEACHER OBSERVATIONS

Based on my own observations (Liyanage), students who previously lacked the confidence to volunteer in class were 
now regularly contributing to class discussions and were more receptive to learning. Since implementing a flipped 
classroom, I have increased collaborative exercises during class time which have promoted group work. Heterogeneous 
grouping of students allows the more capable students in mathematics to support the students who are finding the content 
challenging. The cooperative learning that occurs has enabled students to further develop their reasoning strategies 
and consolidate their understandings. My own teaching philosophy is one where I value rationalism and progress most 
(Bishop, 1988). Therefore, I design tasks which involve more peer-to-peer interactions so that students are required to 
rationalise their thought process with others and not just solve the question. I actively encourage students to engage in a 
growth mindset (Dweck, 2008) and provide opportunities for constructive feedback amongst peers. Classwork becomes 
challenging when students have not engaged with the pre-class activities. I commonly hear students ask their peers “Did 
you watch the video? She showed an example of how to work this out”. Ironically, the students are now questioning each 
other about the completion of homework!

The main disadvantage of flipped learning has been the ‘burnout’ in developing the resources because recording the 
videos has been a time-consuming process. I have been reluctant to source outside material, choosing rather to create 
everything myself because the students have explained that my personalisation helps them to connect with what is done 
in class. Most of my allocated time for planning at school is now dedicated to developing the templates to film and what 
the students will be viewing at home (de Araujo, Otten, & Birisci, 2017). This has resulted in me doing more preparatory 
work after hours; for in-class tasks as well as filming the videos. I feel that I would benefit from receiving support in how 
to better utilise class time, to maximise student learning.

STUDENT FEEDBACK

Upon the completion of a unit on linear graphing, I asked students whether my Edpuzzle videos had supported them. 
Students described the videos as more “engaging” than the usual “confusing and tedious textbook exercises” (Student, 
2019). Students believed that they understood the working out of mathematics problems better when they watched the 
Edpuzzle video of me modelling the process. Students have also reported increased satisfaction with the relevancy of 
materials provided, and greater engagement with, and autonomy over their learning compared with that experienced in 
the past. 

Students have responded favourably to the videos that I have created because it felt like they were receiving one-on-one 
support. In producing the content, much of my attention is focused on producing quality content that is accessible to all, 
whilst also planning for educationally rich experiences in class.

PARENT FEEDBACK

Parents were also appreciative of the videos, and my endeavour to make their sons more independent in their learning.  
One of the students in my Year 9 class has dyslexia and recently, his mother informed me that since implementing flipped 
learning, she had noticed that her son had become much more independent in his approach to learning mathematics. He 
would regularly re-watch the videos to understand a new topic and he was less reliant on extra support to complete his 
coursework. For this student, offering him the opportunity to learn in a different way has reduced his “anxiety that has 
stemmed from his dyslexia” (Parent, 2019).
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DISCUSSION
ADVANTAGES OF FLIPPED LEARNING

The classroom experience described above shows evidence of students actively engaging with their mathematics 
learning. The increased autonomy that allows students to access their learning resources at their own pace, also 
promoted a flexible learning environment.

Flipped learning supports students by decreasing the cognitive load required in a typical mathematics lesson. It provides 
more time for students to process the content of a mathematics lesson through a preview at home. Classroom lessons 
can then be designed to provide maximised opportunities for students to discuss their mathematical understandings and 
misconceptions.

Flipped learning is a similar model to the G.R.I.N. (Getting Ready In Numeracy) intervention program that aims to 
prepare students for their upcoming mathematics lesson through a pre-class tutoring session (Sullivan & Gunningham, 
2011). Decreasing the cognitive load through G.R.I.N. has reported similar results to flipped learning in that pre-
familiarity with the focus content and associated processes seem to engage students who otherwise may have been 
disinclined to participate in classroom discussions (Kalogeropoulos, Russo, Sullivan, & Klooger, 2020). Similar to the 
G.R.I.N. intervention program, the teacher noted that the students in flipped learning came to class with prerequisite 
knowledge upon which they could build. The teacher perceived this as benefiting students and allowing them to be 
more active in class. The students’ interactions were also greater with one another. Flipped learning has the potential for 
differentiating the learning for individual students along with enabling them to develop autonomy over their learning, 
leading to mastery of the content demonstrated through successful completion of the assessment tasks (Muir, 2019).

DISADVANTAGES OF FLIPPED LEARNING

Whilst flipped learning is achieving success in relation to student engagement through access to technology for self-
paced learning, it is important that the current challenges are also addressed. de Araujo et al. (2017) suggested that much 
of the teacher’s planning time and attention in preparing for flipped learning is on the at-home activities rather than the 
in-class activities. Although the teachers’ attention to the at-home resources is important because the home context is 
where the content delivery has shifted, the same attention needs to be given to the planning of the in-class context so 
that rich communication is fostered within and among students in mathematics. Furthermore, the teacher’s role in class 
is to facilitate student learning in rich tasks that are closely related to the pre-lesson materials. Seeking or designing the 
appropriate resources are also a challenge in themselves.

Teacher burnout is also a concern due to the demands of creating content, monitoring blogs and other activities planned 
for flipped learning. Students may not complete the pre-class tasks and this will add more pressure to a teacher who will 
need to adjust planned lessons accordingly (Attard, 2019). Teachers must keep up to date with evolving technology and 
be able to filter and choose prepared resources that are appropriate for their students’ learning context.

CONCLUDING THOUGHTS
Given the amount of experimentation and time needed to find appropriate resources, teachers would benefit from 
knowledge and support related to the creation of high-quality video and multimedia resources to promote effective 
mathematics teaching in flipped learning (de Araujo et al., 2017). Also, teachers could require support in how to better 
prepare for making effective use of the expanded in-class time. Teachers should consider the tasks they use to support 
collaboration as well as the quality and purpose of that collaboration (Herbel-Eisenmann, Steele, & Cirillo, 2013). 

Flipped learning may shift a teacher’s practice if the frequency of increased student self-confidence and engagement 
in mathematics learning prevails. A teacher can be described as the central force in flipped learning because teachers 
often initiate the change in practice themselves (de Araujo et al., 2017). How teachers conceive and enact flipped 
learning reflects their values in mathematics learning. For example, a teacher who values small group interaction with 
her/his students may aim to front-load the students with instructional content (prior to the lesson) and use class time to 
conference with students as reported in this case study.
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An area for future research is understanding teachers’ values for flipped learning so that we can help to align their practise 
with instructional strategies that literature suggests might help them achieve these goals (de Araujo et al., 2017). For 
example, if a teacher values classroom experiences such as group discussions and student presentations, they could be 
directed to specific professional development on how to enact these in maximised classroom time. Lo and Hew (2017) 
emphasise the importance of carefully scaffolding the transition to flipped learning. This includes explaining the rationale 
of flipped learning and its potential benefits to both students and parents. Teachers should carefully choose online material 
for flipped learning to ensure it is appropriate for their students and the context. There appears to be considerable benefit 
in exploring flipped learning if it is valued by a teacher. This case study reported an increase in student engagement 
through flipped learning. Using technology has facilitated this pedagogical practice. However, a considerable amount of 
planning is required to ensure that flipped learning is implemented successfully.

REFERENCES 
Attard, C. (2019). Flipped learning in primary and secondary mathematics: Some lessons. Retrieved from  
http://engagingmaths.com

Bergmann. J., & Sams, A. (2012). Flip your classroom: Reach every student in every class every day. Washington, DC: 
International Society for Technology in Education.

Bishop, A. J. (1988). Mathematical enculturation: A cultural perspective on mathematics education. Dordrecht, The 
Netherlands: Kluwer Academic.

Bishop, J., & Verleger, M. (2013, June). The flipped classroom: A survey of the research. Paper presented at the 120th 
American Society for Engineering Education Conference, Atlanta, GA.

de Araujo, Z., Otten, S., & Birisci, S. (2017). Mathematics teachers’ motivations for, conceptions of, and experiences with 
flipped instruction. Teaching and Teacher Education, 62, 60-70. doi:10.1016/j.tate.2016.11.006

Dweck, C. S. (2008). Mindset: The new psychology of success. New York, NY: Random House Digital.

Flipped Learning Network. (2014). The four pillars of F-L-I-P. Retrieved from http://www.flippedlearning.org/definition

Herbel-Eisenmann, B., Steele, M., & Cirillo, M. (2013). (Developing) teacher discourse moves: A framework for 
professional development. Mathematics Teacher Educator, 1(2), 181-196. doi:10.5951/mathteaceduc.1.2.0181

Kalogeropoulos, P., Russo, J. A., Sullivan, P., Klooger, M., & Gunningham, S. (2020).  Re-enfranchising mathematically-
alienated students: Teacher and tutor perceptions of the Getting Ready In Numeracy (G.R.I.N.) program. International 
Electronic Journal of Mathematics Education, 15(1), 1-17. doi:10.29333/iejme/5881

Lo, C. K., & Hew, K. F. (2017). A critical review of flipped classroom challenges in K-12 education: Possible solutions 
and recommendations for future research. Research and Practice in Technology Enhanced Learning, 12(1), 1-22. 
doi:10.1186/s41039-016-0044-2

Mercieca, B. (2018). Flipping the mathematics classroom. In G. FitzSimons (Ed.), Teachers creating impact: 
Proceedings of the 2018 Mathematical Association of Victoria Annual Conference (pp. 30-35). Brunswick, Australia: 
Mathematical Association of Victoria. 

Muir, T. (2019). Flipping the learning of mathematics: Different enactments of mathematics instruction in secondary 
classrooms. International Journal for Mathematics Teaching and Learning, 20(1), 18-32. Retrieved from  
http://www.cimt.org.uk/ijmtl/index.php/IJMTL/index

Straw, S., Quinlan, O., Harland, J., & Walker, M. (2015). Flipped learning research report. Retrieved from  
https://www.nfer.ac.uk/media/2018/nesm01.pdf

Sullivan, P., & Gunningham, S. (2011). A strategy for supporting students who have fallen behind in the learning of 
mathematics.  In J. Clark, T. Spencer, & S. Thornton (Eds.), Mathematics: Tradition and (new) practices: Proceedings of 
the 34th Annual Conference of the Mathematics Education Research Group of Australasia (pp. 719-727). Alice Springs, 
Australia: Mathematics Education Research Group of Australasia.



THE MATHEMATICAL
ASSOCIATION OF VICTORIA

34

Geometry + technology = proof
Irina Lyublinskaya, Teachers College, Columbia University

Teaching mathematical reasoning and proof in high school geometry is one of the challenging tasks that teachers 
face today. Geometry Expressions™ developed by Saltire Software is a dynamic, constraint-based symbolic geometry 
software, which allows algebraic and figural representations of geometry to co-exist in an environment that fosters 
a holistic view of mathematics. In this paper, we illustrate how symbolic geometry can be used in a variety of ways to 
motivate, develop and realise plans for proof, and facilitate different proof techniques.

INTRODUCTION
Proof occupies an important place in school mathematics since experiences of proving develop students’ analytic 
abilities and let them experience rigorous mathematical thinking (Usiskin, 1980). For more than a century, most 
geometry curricula in the United States have included opportunities for students to understand and conduct proofs. Yet 
observations of students’ geometry thinking and problem solving have yielded a conflicting picture. Schoenfeld (1988) 
documented how students who have completed proof-based courses in geometry, still act as empiricists when solving 
geometric problems. 

Technology can support the development of mathematical reasoning and understanding through geometric proof. Some 
educators argue that a more effective way to engage students in proving is to use dynamic geometry software (DGS), 
which opens up entirely new approaches to the teaching of proof (Gawlick, 2002; Olivero & Robutti, 2007). Educators 
argue that DGS is essential for building up associations between graphs, drawings, and other tools used for formal 
proofs, and plays an important role in enabling students to formulate deductive explanations, and provide a foundation 
for developing ideas of proof and proving (Jones, 2000; Zarzycki, 2004). 

Another powerful tool is computer algebra systems (CAS), which have been recognised as being highly valuable for 
doing mathematics and potentially valuable for teaching and learning reasoning skills. CAS are already a standard 
tool in universities worldwide and have been adopted in high schools in various regions of the world: Austria, parts of 
Australia and New Zealand, and Germany (Flynn, 2003; Garner, 2004; Herget, Heugl, Kutzler, & Lehmann, 2000). 
While CAS have been widely adopted in some US universities, the technology has yet to make any significant mark in 
U.S. high schools. 

Even though dynamic geometry software (DGS) and algebra computer systems (CAS) were introduced for the learning 
and teaching of secondary school mathematics in the early 1980s, their use over the last couple of decades has largely 
been separate. Geometry Expressions is the first of a new class of interactive symbolic geometry systems (Saltire 
Software, 2018). It is a mathematical tool that provides outputs in a symbolic form as algebraic expressions involving 
the input parameters. Integrating geometric and algebraic explorations could be a powerful toolkit for helping students 
develop reasoning skills using an inductive exploration-based approach (Lyublinskaya & Funsch, 2012; Lyublinskaya, 
Ryzhik, & Funsch, 2009; Majewski, 2007; Todd, 2008; Todd, Lyublinskaya, & Ryzhik, 2010). 

This paper illustrates how this symbolic geometry system can be used in a variety of ways to motivate, develop and 
realise plans of proof, and to facilitate different proof techniques in high school geometry.

DESCRIPTION OF PROOF TECHNIQUES
There is no universal method of proof in the study of geometry. This paper outlines examples of five commonly used 
methods that appear frequently in elementary geometry courses, which are typically taught at high school level:

1. Geometric - based on visual representation,

2. Algebraic - based on investigation of various algebraic and trigonometric expressions, 

3. Coordinate - based on introducing a system of coordinates and the use of formulas from coordinate geometry, 
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4. Vector - based on using operations with vectors, and

5. Transformations - based on both isometric (rigid) and non-isometric (non-rigid) transformations on a plane.

Each of these methods has its own features and application to proofs. For some problems, a particular method of proof 
is more effective than another method. Many problems can be addressed effectively using more than one method. There 
are problems in which a combination of methods is needed to complete the proof. Additionally, there are tools, such as 
construction and loci, whose use can be integrated within any of the described methods. 

Proof, regardless of its method of analysis and argument, requires logical thinking and provides an excellent opportunity 
to strengthen students’ thinking and logic skills. The student’s choice of method depends on the nature of the problem 
and on the student’s experience. Familiarity with a wide number of approaches and methods provides the optimum tools 
for the student learning geometry. 

GEOMETRIC METHOD

The geometric method (sometimes called the synthetic method) is the principal method used in elementary geometry. 
This method cannot be formalised and is based on spatial thinking. The core of this method is to represent the problem 
as a “picture” or a diagram. The student then uses the diagram, properties, and characteristics of the figure(s) to derive 
a proof. Geometry Expressions enables students to investigate the properties of geometric figures (their measures, 
invariants, etc.) in the most general way. The software gives students an opportunity not only to formulate conjectures 
but also to visualise them. Consider the following example of the problem, in which students explore the relationship 
between the bisector of the exterior angle and the base of a triangle. 

Problem statement: Given isosceles triangle ABC, AB = AC. The angle bisector is constructed for the exterior 
angle of vertex A. What is relationship between the angle bisector and side BC?

This is a typical geometry problem solved geometrically without additional constructions. Students create a sketch and 
constrain an angle ∠ABC = α . They establish the fact of parallelism between the angle bisector and the base of the 
triangle with the help of the software (Figure 1).

                                                                         

Figure 1. Diagram illustrating symbolic outputs for the problem  
about an exterior angle bisector leading to the plan of proof.

One important technique in geometric proofs is the construction of auxiliary elements. These fall into two groups: the 
construction of additional elements “within” the figure and the construction of new elements that lie “beyond” the given. 
Students generally find the latter less obvious and, hence, more difficult. The following two examples illustrate the use of 
additional constructions.
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1. Construction “within” the given figure: Prove that the angle inscribed in a circle is equal to half of the subtended 
(minor) arc (Figure 2).

                                                                              

Figure 2. The construction of radius OC helps  
to visualise the problem.

2. Construction “beyond” the boundaries of the figure: Prove that the median drawn to the hypotenuse of the right 
triangle is equal to half of the hypotenuse (Figure 3).

                                                                             

Figure 3. Construction of a circle with the center at the 
midpoint of the hypotenuse makes the result obvious,  

since the vertex of the right angle is on the circle.

ALGEBRAIC METHOD

Solving geometric problems often involves the use of formulas, since with the help of formulas we can express the 
measures of segments, angles, and areas. In particular, trigonometric formulas are used. Problems that utilise non-trivial 
algebraic operations will be classified under the algebraic method. The use of algebraic formulas in geometric problem 
solving could lead to the proof of an identity or inequality, to the solution of an equation or inequality, or to finding the 
extremum of a function. Consider the following example:

Problem statement: In a triangle ABC, with fixed angle BAC, AB + AC is constant. Among all such triangles, find 
the one with the largest area.

This is an optimisation problem that can be solved algebraically without additional constructions. After constraining the 
sides and the angle of the triangle to satisfy problem conditions, students can obtain a symbolic expression for the area 
(Figure 4). 
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Figure 4. Symbolic output for the area of the triangle given two  
sides and an angle between them provides a possible plan for proof.

Since the angle is constant, it is sufficient to find the maximum of x(k - x). Based on properties of a quadratic, the 

maximum is reached when x = k
2
.  Thus AB = AC = k

2
,  so the triangle with largest area is isosceles.

COORDINATE METHOD

The first step in using the coordinate method is to define a coordinate system. Of course, it makes sense to define it in 
the most convenient manner; that is, relating both the location of the origin and the orientation of the coordinate axes 
to the given figure(s) in order to facilitate the proof. For example, for a problem about a square, the origin may be 
advantageously placed at the square’s centre with the axes parallel to the sides of the square. Discussion of the relative 
advantages of various placements and orientations of the coordinate system provides students with rich opportunities to 
reason logically and to communicate their thoughts. With the help of the coordinate method, we can tackle two types of 
problems:

1. If the given figures are defined by equations, then the relationships between the figures can be expressed in 
coordinates. The coordinate expressions are then interpreted geometrically. Problems of this type include finding the 
locus of a moving point and determining the shape of an obtained figure(s). Consider the following example:

Problem statement: Given a line and two points where Point A is not on the given line and point B is on the given 
line. Point C is chosen so that AB and BC are equal and perpendicular. What is the locus of the point C, if the point 
B moves along the given line?

For solving this problem, it is most convenient to align the x-axis with the given line and to have point A on the y-axis. 
After completing the construction, students can dynamically explore positions of point C when point B moves along the 
x-axis. Students can verify their conjecture by generating the locus of point C. They can also find an implicit equation 
for the locus. The plan of the proof can be devised after they find coordinates of the point C and construct the additional 
segment CD (Figure 5).

				  

Figure 5. Symbolic outputs for the coordinates and locus of the point C.
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Consider right triangles AOB and BCD. Given AB = BC,  ∠ABO = ∠BCD  are acute angles with mutually perpendicular 
sides, thus  ΔAOB ≅ ΔBCD . Therefore CD = OB = b and BD = OA = h. Since the difference between the coordinates of 
point C, x = b + h and y = b, is constant, the locus is a line. The equation of the line is y = x – h.

2. If the given points are defined by their positions, then the relationships between given figures are found using 
equations. Problems of this type include finding distances between figures, establishing collinearity of points (or its 
absence), and using the distance formula to verify whether one of the distances is equal to the sum of the other two. 
Consider the following example:

Problem statement: Given a square ABCD. Point K is on the side AB and point L is on the side CD, so that  
AK = CL. Will the line KL contain the centre of the square O?

For solving this problem, it is convenient to define a system of coordinates with origin O at the centre of the square. Let 
the length of the side of the square be 2a. Then coordinates of the point K are (-a, -b) and the coordinates of point L are 
(a, b) (Figure 6).

                          

Figure 6. Coordinates and distance calculations guide students to plan the proof.

Students can generate expressions for distances to verify that KL = OK + OL. Proof will then involve using the distance 
formula to confirm software outputs and therefore proving O ∈KL.

VECTOR METHOD

The vector method can be used to solve problems of various types, such as finding measures and determining the relative 
position of lines and points. Proofs by this method generally involve three steps:

1. Interpret the problem statement in terms of vectors by introducing vectors that correspond to the given information.

2. Obtain a solution of the problem in a vector form by using the properties of vectors.

3. Translate the vector-form solution back to the original terms of the problem.
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Consider an example of a problem where students are asked to investigate whether it is possible to construct a triangle 
from the three medians of a given arbitrary triangle. The necessary and sufficient condition for constructing a triangle 
from three segments is given by the triangle inequalities. For this particular problem, it is very difficult to verify the 
triangle inequalities for the medians. Thus, this problem is easier to solve by vector method. In vector terms, the 
necessary and sufficient condition for constructing a triangle is equivalent to the condition that the sum of three non-
collinear vectors is equal to the zero-vector (Figure 7). 

  
Figure 7. Analysis of symbolic expressions for the vector coordinates defined  

based on medians provides basis for proving the existence of a triangle.

Adding the coordinates of all three vectors, we see that result is a zero-vector:
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TRANSFORMATIONS METHOD

The core of this method is to transform the given figure into another one, which leads to a clearer solution. Consider a 
famous problem – finding the shortest distance between two points with reflection of the path from a line. This problem 
illustrates an application of geometry in physics, where the shortest path corresponds to the path that light travels 
from one point to another when reflected from a mirror. This problem is solved by the application of a transformation, 
specifically a reflection.

Problem statement: Points A and B are on the same side of a given line. Find a point C on the line, such that  
AC + CB is smallest.

In this problem, we need to have a fixed line. For simplicity, we will use the x-axis as the given line. Another possibility 
is to draw a line and constrain its equation to y = const (for example, y = 0). In the latter case, the system of coordinates 
does not have to be displayed. Either is done only to create a fixed horizontal line in the diagram. Similarly, constraining 
the coordinates of points A and B only fixes the location of these points (Figure 8).
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Figure 8. Use of reflection suggests an approach for the proof about  
position of the point C when distance AC + CB is minimal.

CONCLUSIONS
Proof is in the heart of geometry. It would not be too much of a stretch to suggest that proof is what geometry is 
“about” – relegating lines, planes, pyramids, and perpendiculars to the status of the raw material on which we practice 
the art of proof. The premise of this paper is that Geometry Expressions software can alter how students reason about 
geometry. So, the first step is to acquire a degree of fluency with Geometry Expressions. Students need to understand the 
underlying concept of this constraint-based software. Failure to grasp the nature of this basis will likely be the source of 
much confusion and discouragement. You don’t need to know everything but you do need a working knowledge of the 
principal features of the software. 

This paper illustrated various techniques and methods for mathematical proof. It also displayed the different ways 
Geometry Expressions can be used. For some problems, the software is used to provide input that suggests a conjecture. 
For others it may suggest an approach to developing a proof. In a few examples, the symbolic representation generated 
by the software is an element of the proof. We hope that this paper challenged the reader to reflect on the role that 
computing technologies such as Geometry Expressions could play in the future of mathematics education. 
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Addressing misconceptions  
about mass and volume
Heather McMaster, University of Sydney

Upper primary school students often find it difficult to differentiate between mass and volume. In this article, possible 
reasons are given as to why this is difficult. It is recommended that activities in primary school, integrate mass and 
volume (from the mathematics curriculum) with the properties of materials (from the science curriculum) so students are 
better prepared for secondary school. Ideas for such activities are listed.

INTRODUCTION
In the Australian primary mathematics curriculum, students learn to measure ‘mass’ and ‘volume’. Children come to 
school with intuitive understandings of measurement attributes (McDonough, Cheeseman, & Ferguson, 2013) however 
many students fail to be able to differentiate between mass and volume in the upper primary and early high school years 
(Senzamici & McMaster, 2019). This confusion could stem from the mathematics and science curricula being taught 
in isolation from each other and a failure to provide instruction that explicitly connects new meanings to students’ prior 
knowledge and the understandings they have gained through everyday experiences. Very similar but somewhat different 
meanings of ‘weight’ and ‘capacity’ in everyday life, and the relationship between different units of measurement in the 
metric system, add to the confusion.

DEFINITIONS OF MEASUREMENT ATTRIBUTES
‘Mass’ is defined in the mathematics curriculum as “how much matter is in a person, object or substance” (Australian, 
Curriculum, Assessment and Reporting Authority [ACARA], n.d.). The term ‘matter’ is complex, so the term ‘stuff’ is 
commonly used in primary science educational literature (Skamp, 2005). The ‘Chemical Sciences’ strand of the primary 
science curriculum is primarily concerned with properties of materials and substances (chemically pure materials) while 
the ‘Measurement and Geometry’ strand of the mathematics curriculum is mainly concerned with measuring objects. 

People generally understand ‘mass’ to be synonymous with ‘weight’ because in everyday life, both are measured in 
the same units (grams, kilograms, and tonnes). Weight, however, is measured in Newtons and refers to the amount 
of gravitational force acting on matter. Weight and mass are directly related on earth where gravity is the same. An 
astronaut has the same mass on the earth as on the moon, however he weighs about six times less on the moon so he can 
jump about six times higher.

‘Volume’ is an amount of three-dimensional space. The primary science curriculum does not mention the word ‘volume’ 
but states that gases “take up space” (ACARA, n.d.). The mathematics curriculum introduces and defines the term 
‘volume’ but only in relation to solid objects: “The volume of a solid is a measure of the space enclosed by the solid. For 
a rectangular prism, Volume = Length × Width × Height” (ACARA, n.d.). Three-dimensional space can be measured in 
cubic units or in litres (e.g., the size of a suitcase). However, the volume of solids is generally measured in cubic units 
and the volume of pourable substances, such as potting mix, is usually measured in litres or its derivatives. A millilitre is 
defined as a cubic centimetre. Capacity is defined as “how much a container will hold” (ACARA, n.d.).

SOURCES OF CONFUSION BETWEEN MASS AND VOLUME
‘Weight’ and ‘density’ can be confused because both are described in terms of ‘heaviness’ (Senzamici & McMaster, 
2019). Weight is the heaviness of an object whereas ‘density’ is a property of the material an object is made of. The 
heaviness of a substance or material is its density (meaning its mass in relation to its volume), while the heaviness of an 
object is its weight (which is directly related to its mass). 

Children will often assume that one object must be heavier than another based on the stuff from which it is made, and 
not realise that the volume of the object also needs to be considered (Senzamici & McMaster, 2019). A simple way of 
describing the density of an object is to say that it is heavy or light ‘for its size’. ‘Density’, however, is not mentioned in 
either the mathematics curriculum or the science curriculum in primary school.
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Some children think that mass and volume are the same thing because they are both measures of an amount of material. 
If ‘mass’ and ‘volume’ are referring to the same non-compressible material at the same temperature, this is not a problem 
because mass is then directly proportional to volume. In cooking recipes, the ingredients are often stated in cups (an 
informal measure of volume) because measuring an ingredient with a cup is easier than weighing it on kitchen scales 
(which requires getting the tare correct). The weight of flour in a cup, however, differs depending on whether it has been 
sifted or compacted.

Although the mathematics curriculum expects students to understand capacity as a volume, the everyday meaning of 
the word ‘capacity’ applies to both weight and volume. “How much a container will hold” (ACARA, n.d.) could be 
measured in grams. Based on their research, Ho and McMaster (2019) suggest that the term ‘interior volume’ replace 
the word ‘capacity’ so students recognise that in measuring the capacity of a container, they are measuring an amount of 
three-dimensional space and not the weight of a pourable material that the container can hold (i.e., the filling). 

The use of differently-named attributes and units of measurement for different states of matter could also be contributing 
to the confusion between mass and volume. Commonly, solid materials (e.g., ice) are sold by weight and liquids (e.g., 
water) are sold by volume. Students therefore generalise that the difference between a gram and a millilitre is whether 
the matter being measured is a solid or a liquid. Viscous materials such as sauces and honey are sometimes sold by 
weight and sometimes sold by volume.

Students confusing mass and volume in the upper years of primary school could also be related to them being introduced 
to formal units within the metric system. They see the metric system of measurement as a system in which all units are 
related to each other. Having been told that a cubic centimetre equals a millilitre, it’s reasonable for them to also equate 
a millilitre to a gram. Historically a gram was defined as the mass of water at its greatest density (i.e., at 4ºC), so students 
may think this relationship holds for all liquids and possibly for all solids as well. 

Only measuring water at school (or measuring common supermarket items such as milk or juice which are composed 
largely of water) reinforces the misconception that a millilitre weighs a gram, as does the use of plastic centicubes 
manufactured to weigh one gram so they can be used to measure both mass and volume. 

Yet another confusion has arisen in recent years. Different measurement attributes are usually measured using different 
measuring instruments, however today you can buy a set of electronic kitchen scales and change the units from grams to 
millilitres of water or milk by just pressing the ‘units’ button.

THE AUSTRALIAN MATHEMATICS AND SCIENCE CURRICULA
The primary school Australian Curriculum science and mathematics outcomes related to materials, mass and volume, 
are listed in Table 1. Notice that the science curriculum is concerned with the properties of materials and the mathematics 
curriculum is concerned with the measurement of objects. The mass of an object depends on its volume and the density 
of the material from which it has been made. Beginning at the Foundation year, students could be talking about the 
heaviness of materials (meaning density) in science lessons and the heaviness of objects (meaning mass) in mathematics 
lessons. The attributes of mass and volume are not specifically mentioned in the primary school science curriculum until 
Year 5 when, in the ‘Chemical Sciences’ sub-strand, the outcome is “Solids, liquids and gases have different properties 
and behave in different ways” (ACARA, n.d., ACSSU077). Under this outcome is the elaboration: “observing that gases 
have mass and take up space, demonstrated by using balloons or bubbles”.
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Year level Science curriculum outcome Mathematics curriculum outcome
Foundation Objects are made of materials that have 

observable properties (ACSSU003)
Uses direct and indirect comparisons to decide which 
is longer, heavier or holds more, and explain their 
reasoning using everyday language (ACMMG005)

1 Everyday materials can be physically changed 
in a variety of ways (ACSSU018)

Measure and compare the lengths and capacities 
of pairs of objects using uniform informal units 
(ACMMG019)

2 Different materials can be combined for a 
particular purpose (ACSSU031)

Compare and order several shapes and objects based on 
length, area, volume and capacity using appropriate 
uniform informal units (ACMMG037) 
Compare the masses of objects using balance scales 
(ACMMG038)

3 A change of state between solid and liquid 
can be caused by adding or removing heat 
(ACSSU046)

Measure, order and compare objects using 
familiar metric units of length, mass and capacity 
(ACMMG061)

4 Natural and processed materials have a range 
of physical properties that can influence their 
use (ACSSU074)

Use scaled instruments to measure and compare 
lengths, masses, capacities and temperatures 
(ACMMG084) 
Compare objects using familiar metric units of area and 
volume (ACMMG290)

5 Solids, liquids and gases have different 
observable properties and behave in different 
ways (ACSSU077)

Choose appropriate units of measurement for length, 
area, volume, capacity and mass (ACMMG108)

6 Changes to materials can be reversible or 
irreversible (ACSSU095)

Convert between common metric units of length, mass 
and capacity (ACMMG136) 
Connect and volume and capacity using their units of 
measurement (ACMMG138)

Table 1. Outcomes in the F-6 Australian Curriculum: Science and the Australian Curriculum: Mathematics that involve 
‘mass’, ‘volume’, and properties of materials. Words related to mass, volume, and materials are bolded.

THE NATIONAL NUMERACY LEARNING PROGRESSION
The National Numeracy Learning Progression (ACARA, 2017) has the sub-element ‘Understanding Units of 
Measurement’. This progression has nine levels. The ability to explain the difference between mass and volume occurs 
late in this progression, at Level 7. The other pairs of attributes mentioned as being difficult to distinguish between, are 
“area and perimeter” and “volume and capacity”. 

These pairs of attributes that children find confusing are all attributes that are siloed in the early years of the mathematics 
curriculum. Because ‘capacity’ (measured by filling containers with a liquid) has unstructured units, it is taught 
earlier than the volume of solids. To understand the cubic units for the volume of a solid, students need to understand 
their row, column and layer structure. The measurement of perimeter and the measurement of area are also taught 
initially as separate topics because understanding the structure of the formal units of area (two dimensions) requires 
an understanding of units of length (one dimension). The attributes of mass and volume are similarly taught initially as 
separate topics. The measurement of mass and capacity/volume are taught earlier than the volume of a solid, because 
their formal units are unstructured. Mass does not even appear in an outcome of the mathematics curriculum after Year 6.

CHILDREN’S UNDERSTANDING OF DENSITY
The attributes of mass and volume are related by the concept of ‘density’. An understanding of the properties of 
materials requires an appreciation of this concept. Based on their research in science education, Smith, Wiser, Anderson, 
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and Krajick (2006) claim that children should be taught about properties of materials before being taught about the 
volume of objects. Having understood density, it follows that objects made from the same type of stuff (irrespective of 
their volume) have the same density.

Because many children in primary school have already heard of the word ‘density’ and have some intuitive 
understanding of it (Senzamici & McMaster, 2019), its meaning could be made more explicit before students reach 
secondary school. Kloos, Fisher, and van Orden (2010) found that children are better able to differentiate ‘density’ from 
‘mass’ and ‘volume’ in tasks where ‘density’ is made more salient. 

Density is never mentioned in the mathematics curriculum and may not be mentioned in science lessons until Year 8, 
when they learn about the particle theory of matter: “Properties of the different states of can be explained in terms of the 
motion and arrangement of particles” (ACARA, n.d., ACSSU151). Senzamici and Ho (2019) found that giving primary 
school students a formal definition of density as a ratio of mass to volume is of little help to them. However, Kloos et 
al. (2010) found that children could still appreciate the meaning of ‘density’ when this attribute is made salient to them. 
Senzamici and Ho (2019) recommend age-appropriate engagement with density, rather than its complete exclusion from 
mathematics and science teaching in primary school. Such engagement could help students distinguish between heavy 
as a description of mass and heavy as a description of the density of a type of material. It may also help them differentiate 
between the attributes of ‘mass’ and ‘volume’.

SOME ACTIVITIES INVOLVING BOTH MASS AND VOLUME
Below are some suggested activities for helping students differentiate between ‘mass’ and ‘volume’. They integrate the 
topics of mass and volume from the mathematics curriculum with the topic of materials from the science curriculum (see 
Table 1).

ACTIVITY 1 – TWO TYPES OF ‘HEAVY’
•	 Give students a variety of materials to sort as ‘heavy material’ or ‘light material’:

Heavy materials - plasticine, play-dough, clay, heavy wood, heavy stone

Light materials - lightweight foam clay (e.g., rainbow foam), cork, polystyrene foam, sponge, cotton wool, balsa 
wood, pumice stone. 

•	 Choose two different materials (one heavy and one light) from which to make pairs of objects with the same shape 
and size. 

•	 Using a beam balance, compare the mass of same-sized and same-shaped objects made from different materials. 

•	 Discuss the objects using the words ‘heavy object’ and ‘light object’. 

•	 Describe some objects as being ‘heavy for their size’ or ‘light for their size’. A ‘light object’ can also be ‘heavy for its 
size’ because it is small but made of heavy material.

ACTIVITY 2 – KEEPING MASS THE SAME
•	 Give students a lump of playdough and a lump of lightweight foam clay to put on each side of a beam balance.

•	 Ask them to remove some of the playdough from the balance until the play-dough and foam clay have the same 
mass. 

•	 Change the shape of each material and weigh them again. Discuss how the mass doesn’t change if you change the 
shape of the material. Similarly show that if you split the material on one side of the balance into smaller pieces, the 
total mass remains the same.

•	 Discuss how the same mass of different materials can have different volumes. Heavier material will have less 
volume for the same mass.
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ACTIVITY 3 – KEEPING VOLUME THE SAME (NON-COMPRESSIBLE MATERIAL)
•	 Give students a small rectangular prism (a block) and centicubes (plastic or wooden). Ask them to find the 

approximate volume of the block using the centicubes. 

•	 Discuss whether the mass of the block will be the same as the mass of the centicubes.

•	 Ask them to use the same number of centicubes to make a different shaped object.  
Discuss whether the volume changes when the dimensions change. 

•	 Give students a lump of playdough to make into an object. Tell them that playdough (like the centicubes) cannot be 
compressed. 
Discuss whether the volume changes when the dimensions change. 

ACTIVITY 4 – THE DENSITY OF FLUIDS
•	 Give students a cylindrical container. Tell them you have three substances (e.g., chocolate sauce, orange drink and 

honey). Ask them to draw what they think will happen if you put the same weight of each substance into the cylinder.

•	 Discuss whether there will be layers of each substance or if they will be mixed up.

•	 Give them access to the substances to weigh and put them into the cylinder in whatever order they choose. Tell them 
that the group with the most accurate weighing, the cleanest placing of substances in the cylinder and the clearest 
layering, wins a prize.

•	 Judge the cylinders. Discuss why the heights of the different layers are different.

By using two or more different materials (hence having different densities) within the same activity, discussion includes 
the attribute of mass and the attribute of volume. As with the attributes of area and perimeter, investigating two attributes 
simultaneously could better enable students to distinguish between them. 
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Open-ended tasks in mathematical methods
Trang Pham, Methodist Ladies’ College

Mathematical reasoning is the ability to analyse, prove, evaluate, explain, infer, justify and generalise. Open-ended 
tasks provide opportunities for students to develop the ability to make choices, interpret, formulate, model and 
investigate problems, and communicate solutions effectively and efficiently. Open-ended tasks are often designed to be 
fun so that students are more engaged in primary schools. However, many students seem to struggle with the openness 
of these tasks at the secondary level. This paper will explore a way to introduce open-ended questions at the start of Year 
11 Mathematical Methods through an investigation project. Hence, it will help students to become familiarised with the 
format of these questions, and that they will learn there is often more than one correct answer as well as more than one 
strategy to solve the problem.

INTRODUCTION 
According to the assessment of the study design, which now has an accreditation from 2016 to 2021, for Units 1 and 2 
Mathematical Methods, “teachers should use a variety of learning activities and assessment tasks that provide a range of 
opportunities for students to demonstrate the key knowledge and key skills in the outcomes” (Victorian Curriculum and 
Assessment Authority [VCAA], n.d.-b, pp. 36 & 41). 

Mathematical Methods teachers are quite comfortable with and good at assessing students using tests/assignments/
exams. However, not everyone is comfortable with preparing an assessment task such as a mathematical investigation. 
These tasks provide students an opportunity to explore mathematically in greater depth and breadth, resulting in a wide 
range of student responses, which may not be possible to complete under timed conditions such as an examination. 
Furthermore, these tasks require students to apply mathematical processes in non-routine contexts, make a choice, and 
tackle open-ended questions. They need to utilise a variety of techniques to explore, investigate, interpret, and draw 
valid conclusions.

WHAT DOES A MATHEMATICAL INVESTIGATION LOOK LIKE?
Let’s start by comparing a closed question and an open-ended question.

1.	 Sketch a graph of  f(x) = 4(x – 3)2 – 1, showing all key features. 

2.	 Investigate a family of parabolas that has a turning point at (3, -1) which has zero, one, or two x-intercepts. What 
generalisations can be made?

In the first question, there is only one graph with fixed key features: an open upwards U-shaped curve known as a 
parabola, a turning point at (3, -1),  x-intercepts of 2.5 and 3.5, and a  y-intercept of 35. While in the second question, 
students will soon learn that there is a wide range of responses.

From the above example, it is clear that students need to understand the difference between a closed question and an 
open-ended question. However, students often struggle to navigate open-ended questions as they do not know what 
would be the best approach to take. They do not know where to start, what information they need to provide and 
therefore they are not confident in their final answer. Not only that, students do not realise that an open-ended question 
can produce multiple solutions depending on their methodology. Thus, a possible class activity is to teach students how 
to change a closed question into an open-ended one that assesses similar skills but in more depth. Students would need 
to familiarise themselves with command key terms such as comment, compare, contrast, construct, describe, deduce, 
explain, explore, interpret, investigate, model, justify, and verify. 

This paper provides two samples. The first sample is written according to the advice given from the study design, which 
is suitable for Unit 1 Mathematical Methods. The second sample is an activity which helps students to recognise the 
difference between closed and open-ended questions. For open-ended questions, do students use trial and error methods 
to solve the problem? Do students know how to apply strategic problem-solving skills to solve the problem for an 
efficient and elegant solution(s) which has met all the given criteria?
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SAMPLE 1 – INVESTIGATING GRAPHS OF POWER FUNCTIONS
This task is designed for students to investigate different types of graphs of power functions and their transformations. 
Students would benefit from watching a short video on Hyperbola graphs before they do this investigation in order to 
familiarise themselves with the basic features of these graphs.

It is important that students understand the key features of graphs, which include:

•	 Axial intercepts – usually given in the coordinate pair form

•	 End point(s) – label point(s) and ‘empty/solid’ dot(s)

•	 Turning points – given in the coordinate pair form

•	 Asymptotes – draw a ‘dashed’ line and label with their equations

Consider the function  f(x) = xn , where n∈N  and n∈ −2,−1, 1
3

, 1
2

⎧
⎨
⎩

⎫
⎬
⎭

  

 
RECTANGULAR HYPERBOLA GRAPHS 

When n = –1  the function f(x) = xn  becomes f(x) = x-1 which can also be written as f (x) =
1
x
.

This is the rule for a rational function called a rectangular hyperbola. It is also called a right hyperbola, or hyperbolic 
graph.

What happens if:

•  x = 0?  Since division by zero is not defined, hence 0 must be excluded from the domain.

•  y = 0? Since there is no number whose reciprocal is zero, hence 0 must be excluded from the range.

Thus, this graph has two asymptotes, namely x = 0 and y = 0, which are perpendicular to each other. The asymptotes are 
key features of the graph of a hyperbola.

Component 1

This component refers to introducing the context through specific cases or examples (VCAA, n.d.-a).

Question 1

a. Sketch the following graphs and clearly indicate all key features.  

	 i.     f (x) =
1
x

	 ii.    g(x) =
1
x + 2

+1

b. State the transformations required to map the graph of y = f(x) onto the graph of y = g(x).

c. The graph y = af(x – b) + c  has an asymptote at x = 2  and an x-intercept of 4. 

	 i.     Explain why c ≠ 0.

	 ii.   State the relationship between a and c .

	 iii.  If −5 ≤ c ≤ 5   and c ≠ 0 , investigate all possible values of a. 

	 iv.   Choose 2 different values of c from part ciii, hence find the corresponding values of a and sketch these 2 
                        graphs on a different set of axes, showing all key features. 
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Question 2

Use your CAS calculator to explore the following functions. What are the similarities and differences between these 
graphs?

              

a.    f (x) = 1
x

b.   f (x) = 1
x −1

c.   f (x) = 1
x + 2

d.   f (x) = 1
3− x

e.   f (x) = 1
x
− 2

f.   f (x) = 2− 1
x

g.   f (x) = 1
x + 2

+1

h.   f (x) = 1
1− x

+1

Component 2

This component refers to considering the general features of the context (VCAA, n.d.-a).

Question 3 

The graph of  y = f(x)  where f (x) =
1
x

 has transformed into the graph of  y = af(x – b) + c  where a, b, c ∈R and a ≠ 0.

Choose four different sets of values of the parameters a, b and c.  Explain why you have chosen these values.

a. In each of the cases in part a, sketch the graphs of these functions on a different set of axes, clearly indicating all key 
features.  

b. Choose two cases from part a, state the transformations required to map the graph of y = f(x) onto the graph of  
y = af(x – b) + c.

c. Investigate how the values of  a, b, and c relate to the locations of the asymptotes and the quadrants to which the 
graphs of y = af(x – b) + c are in. Draw a conclusion about the key features of these graphs. 

Component 3

This component refers to the “variation or further specification of assumption or conditions involved in the context to 
focus on a particular feature or aspect related to the context” (VCAA, n.d.-a).

Question 4 

Consider the function  y = af x − b( )n + c,  where a, b, c ∈R and a ≠ 0,  n ∈ N  and n∈ −2,−1, 1
3

, 1
2

⎧
⎨
⎩

⎫
⎬
⎭

.

a.    Investigate the graphs and their names of the above function for combinations and ranges of values of the parameters 
a, b, c, and n.  

b.    What generalisations can be made?
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SAMPLE 2 – INSIGHT INTO CLOSED VS. OPEN-ENDED QUESTIONS  
AND STUDENT CHOICE ASPECTS
SCENARIOS 1 TO 5

The number of Tails, X, when a coin is tossed n times has the following probability distribution table.

x a b c d e f g h i
X = x j k l m n p q r s

Scenario 1

The coin is fair and tossed 6 times. 

a.   Find the values of the unknown from the above probability distribution table.

b.   Construct a scatterplot using the values found from the probability distribution  table.

c.    Find and interpret the following: 

       i. E(X)			   ii. SD(X)		  iii. Pr(µ − 2σ ≤ X ≤ µ + 2σ )

Scenario 2

The coin is fair and tossed 8 times. 

a.   Find the values of the unknown from the above probability distribution table.

b.   Construct a scatterplot using the values found from the probability distribution table.

c.   Find and interpret the following: 

      i.    E(X)			   ii. SD(X)		  iii. Pr(µ − 2σ ≤ X ≤ µ + 2σ )

Scenario 3

The coin is fair and you choose a number of times it can be tossed (state this value).

a.   What would you expect the scatterplot to be?  How is it different/similar to Scenarios 1 and 2?

b.   How would the following change?

      i.    E(X)			   ii. SD(X)		  iii. Pr(µ − 2σ ≤ X ≤ µ + 2σ )

Scenario 4

The coin is fair and tossed n times. 

a.   Find in terms of n

      i.    E(X)			   ii. SD(X)

b.    How would the scatter plot and Pr(µ − 2σ ≤ X ≤ µ + 2σ ) change if n is increasing?

Scenario 5

The coin is biased and tossed 5 times. 

a.  If VAR(X) is to be between 0.5 to 1.1, investigate the missing values from the probability distribution table.
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b.   Hence or otherwise, investigate the possible values of:

      i.    E(X)			   ii. SD(X)

c.   What would you expect the scatterplot to be?  Discuss how the scatterplots change if:

	 the coin is tossed n times and n is increasing.

	 the probability of getting a tail on a single trial changes.

d.   Investigate whether it is possible to have a probability distribution table if VAR(X) = 3. How do you know? Explore 
the possible values of variance.  

Scenario 6

A spinner is numbered from 0 to 5 and each of the six numbers has a different chance of coming up. 

The probability of the numbers 1 and 4 coming up are 0.125 and 0.086, respectively.

If the VAR(X) is to be between 1 to 3:

a.   Investigate a possible probability distribution table.

b.   Use your probability distribution table to find the following and discuss your results.

      i.    E(X)			   ii. SD(X)		  iii. Pr(µ − 2σ ≤ X ≤ µ + 2σ )

REFLECT ON YOUR INVESTIGATION
•	 Discuss the similarities and differences between these questions.

•	 Which question(s) would be considered “closed/open-ended question(s)?  Justify your answer. 

•	 What are the key command terms in these questions? What are the expectations of these terms?

•	 How do you take a “closed” question, and turn it into an “open-ended” question that assesses similar skills but in 
more depth? Can you give some examples?
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Beyond the arithmetic operation: How the  
equal sign is introduced in Chinese 
classrooms
Jiqing Sun, Deakin University

The relational understanding of the equal sign is an essential foundation for algebra. In recent decades, researchers 
have documented that many students have a narrow conception of the equal sign, viewing it as a one-directional ‘show 
result’ symbol. On the other hand, Chinese primary students commonly understand the equal sign relationally, which 
is the focus of this paper. Four features of the Chinese approach will be discussed: a) introducing the equal sign before 
traditional arithmetic operations, b) an instructional sequence that is in line with RME theory, c) the way of drawing an 
equal sign, and d) the emphasis of ‘two-sides’ sense. This research contributes to providing an effective starting point of 
developing students’ relational understanding of the equal sign, which could be adapted to the Australian Curriculum.

BACKGROUND
Forty years ago, Kieran (1981) highlighted that many students view the equal sign as a ‘show result’ symbol, rather than 
an indication of the equivalence of two sides. With this misconception, many students have difficulties in understanding 
equations such as ‘3 = 3’, and ‘3 + 2 = 4 + 1’ (Kieran, 2004). Nowadays, the persistence of this narrow conception 
is still widely documented (e.g., Carpenter, Franke, & Levi, 2003; McNeil, Fyfe, & Dunwiddie, 2015; Pang & Kim, 
2018; Schwarzkopf, Nührenbörger, & Mayer, 2018). Carpenter et al. (2003) called for the development of the relational 
understanding of the equal sign (i.e., that it indicates a bidirectional equivalent relation of two sides). 

This understanding is a fundamental concept in students’ transition from arithmetic to algebra (e.g., Blanton et al., 2015; 
Carpenter et al., 2003; Pang & Kim, 2018). Without it, students will encounter difficulties learning algebra. Filloy and 
Rojano (1989) showed students with a narrow equal sign conception were not able to understand and solve equations 
with unknowns on both sides (e.g., 2x + 1 = x + 3), since they thought the equal sign should always be followed by an 
answer rather than another unknown. There has been a great deal of research exploring instructional strategies to foster 
students’ relational understanding of the equal sign. This study contributes to this growing research by investigating the 
Chinese approach to teaching this concept. 

LITERATURE REVIEW
Carpenter et al. (2003) suggested a series of number-sentence activities that could broaden students’ equal sign 
conception. For instance, ‘true/false’ number sentences have been shown to be beneficial in extending students’ 
conception of the equal sign. By evaluating related number sentences as true or false (e.g., 3 + 5 = 8, 8 = 3 + 5,  
8 = 8, 3 + 5 = 5 + 3), Carpenter et al. (2003) showed that students’ misconception could be challenged. This kind of task 
could create a cognitive conflict between students’ intuitive knowledge (e.g., considering unconventional equations 
such as 8 = 8, 3 + 5 = 3 + 5 as true) and their narrow conception of the equal sign (e.g., considering other unconventional 
equations such as 8 = 3 + 5 as false). Therefore, it can provide students with an opportunity to further examine their 
conception of the equal sign. This instructional approach is evidenced to be effective by other algebra researchers (e.g., 
Knuth, Stephens, Blanton, & Gardiner, 2016; Molina & Ambrose, 2006). 

Alternatively, others (e.g., McNeil et al., 2015) proposed a teaching approach based on modifying students’ arithmetic 
operation practice. As researchers (McNeil, 2008; Seo & Ginsburg, 2003) showed, when students practice arithmetic 
operation skills, questions are generally presented in a traditional form such as ‘1 + 2 = _’. Schwarzkopf et al. (2018) 
explained that this traditional form of practice might lead to students thinking the equal sign always requires an answer 
based on computation. Therefore, this form of practice could reinforce and activate students’ one-directional ‘show 
result’ conception of the equal sign, and therefore hinder the emergence of the relational (bidirectional) view (McNeil, 
2008). McNeil et al. (2015) suggested that teachers and textbooks should provide students with more exposure to 
non-traditional forms of arithmetic operation practice, such as ‘_ = 1 + 2’ and ‘3 = 1 + _’. Thus, the emergence of a 
bidirectional view of the equal sign will not be impeded by a one-directional calculation pattern. In fact, McNeil et al. 
(2015) demonstrated that modified arithmetic practice (non-traditional forms) improved students’ relational conception 
of the equal sign. 
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Based on the literature reviewed, I consider that both aforementioned approaches (number sentence comparison and 
non-traditional arithmetic operations) are similar, although their starting points are different. Both approaches address 
students’ one-directional conception of the equal sign by exposing them to a wide range of non-traditional equation 
forms. Hence, I argue that presenting non-traditional equations to challenge students’ pre-conceptions could be a 
foundational way to develop relational understanding of the equal sign at an early stage. 

While students’ narrow conception of the equal sign is common, this difficulty is not universal. Li, Ding, Capraro, and 
Capraro (2008) showed that Chinese primary students commonly understand the equal sign relationally. Li et al. (2008) 
identified factors that contribute to Chinese students’ relational understanding, such as the presentation of the concept of 
equality in Grade 1 before students encounter the arithmetic operation. With a range of realistic contexts and everyday 
language such as “the same as” and “more than”, teachers put emphasis on comparing two quantities. The formal equal 
symbol is introduced afterwards. Li et al. (2008) suggested that these instructions can help students to transition from a 
concrete context to the formal mathematical symbol, and build students’ knowledge based on prior experiences. I further 
explore the Chinese approach from an early algebra educator’s perspective, so as to inform Australian mathematics 
classroom instruction.

RESEARCH DESIGN
METHODOLOGY

This qualitative case study is inspired by Clarke’s (2001) complementary accounts methodology. According to Clarke 
(2001), for a comprehensive understanding of students’ learning activity, perspectives from researchers, teachers, and 
students need to be investigated tso that the possible bias from one data source can be avoided through triangulation. 

A lesson plan (Figure 1) to introduce the equal sign from a Chinese official teachers’ guidebook was analysed. I made 
connections between the teaching sequences described in the lesson plan and the factors extracted from the existing 
literature that support students’ relational understanding of the equal sign. Furthermore, I reviewed a teacher’s reflective 
journal, which documented the teacher’s comments on the lessons that were designed in accordance with the lesson plan 
in Figure 1. Due to ethical restrictions, I did not have an opportunity to conduct student interviews. 

DATA SOURCE

The lesson plan used in this study is from a teachers’ guidebook Teachers’ Instruction Guidebook, by the Primary and 
Secondary School Teaching and Learning Research Group, JiangSu (PSSTLR). PSSTLR JiangSu is a research body 
under China’s Ministry of Education, so this guidebook can is an official educational document. 

The teacher’s reflective journal was provided by one teacher who publicly shared it in a professional development 
workshop. This teacher works in a kindergarten in the city of Wuxi, JiangSu province. 

RESULTS AND DISCUSSION
LESSON PLAN 

Figure 1 (p. 54) shows the English version of the lesson plan.

The concept of equality and the equal sign are presented in the kindergarten curriculum, and students learn formal 
arithmetic operations such as ‘1 + 2 = 3’ in Grade 1. This is consistent with the finding by Li et al. (2008) that students 
in China encounter the concept of the equal sign prior to the formal arithmetic operation. Following Li et al. (2008), 
I tried to gain further insight into the importance of this setting. As discussed earlier, a common misconception of the 
equal sign is that it is a one-directional ‘show results’ symbol. This misconception could be triggered and reinforced by 
the traditional arithmetic operation (McNeil, 2008; McNeil et al., 2015). In the lesson plan, at the start, the equal sign is 
presented without any arithmetic operations. Thus, the students’ first encounter with the equal sign is not muddled by 
a ‘left to right’ operation; rather, students can clearly see that it indicates an equivalence between two sides. Hence, the 
equal sign is presented as representing a bidirectional equivalence relationship before students see it embedded in an 
arithmetic operation. With this approach, the risk that students view the equal sign as a one-directional symbol could be 
minimised. 
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Figure 1. English version of lesson plan.

The instructional sequence to introduce the formal equal sign in this lesson plan is notable. While showing two cards 
that depict an equal number of fruits, the teacher asks students whether the two cards show the same number. This 
question is in accordance with Li et al. (2008), who found the conception of equality was developed based on students’ 
own experiences in a realistic context in Chinese classrooms. According to the Realistic Mathematics Education (RME) 
theory (Van den Heuvel-Panhuizen & Drijvers, 2014), a context that students can experientially make sense of is an 
effective starting point for students’ formal mathematics learning. After students make a comparison, the teacher asks 
students what they can put between these two cards so other people can clearly see that the quantities on them are the 
same. In this step, it is possible that students use various self-invented symbols that indicate the equivalence, meaning 
they may not necessarily use the formal equal sign. However, as long as students use symbols to represent the concept of 
‘the same as’ or ‘equal number’, they step beyond the concerte experience into formal mathematics representation. This 
process is in line with transition activities from informal to formal mathematics suggested by RME theory. The lesson 
plan requires teachers to use the phrase such as “between these two cards”. This phrase emphasises bidirectionality to 
students, which is helpful to reinforce a relational conception of the equal sign. 

In the final step of the lesson, teachers introduce the formal equal sign to students, and they need to emphasise that when 
drawing this symbol, the two horizontal lines must be the same length. By stressing this detail, a ‘two sides’ sense is 
further pressed in students’ conception. 

After instruction, the lesson plan requires students to complete a quiz as shown in Figure 2 (p. 55).
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Figure 2. Quiz.

In this quiz, students fill the unknown numbers either on the left or the right side. By completing this quiz, students can 
see that the equal sign is bidirectional. Furthermore, this quiz is a kind of prototype of formal mathematics questions 
such as ‘5 = _” and “_ = 6”. According to Matthews, Rittle-Johnson, McEldoon, and Taylor (2012), this type of question 
could probe whether students possess a rigid ‘show results’ conception of the equal sign. 

In summary, the ‘two sides’ sense is ubiquitously highlighted in this lesson to introduce the equal sign in Chinese 
kindergarten classrooms, which is a major factor that contributes to Chinese students’ relatively strong bidirectional 
view of the equal sign.

TEACHER’S REFLECTIVE JOURNAL 

Figure 3 shows the excerpts from a teacher’s reflective journal.

 
Figure 3. Excerpts from teacher’s reflective journal.
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As shown, this teacher considers this instructional approach to be effective. The teacher commented that students had 
no difficulty in evaluating whether two cards show the same number of fruits. This evidences that students’ everyday 
experience is an accessible starting point for formal mathematical learning. When the teacher required students to put 
a symbol between two cards, she found that students inserted different symbols and even words such as “the same” or 
“the same number”. This is consistent with RME theory, as students might use informal strategies to solve problems. The 
teacher commented that although they were not able to use a formal equal sign, students clearly understood that they had 
to put something indicating that the numbers on the two sides were equivalent. Interestingly, the teacher also noted that a 
small number of students chose a formal equal sign, which means they might have learnt this at home.

The teacher also highlighted that it is helpful to stress that the two horizontal lines must be of equal length when 
introducing the equal sign. As the teacher stated, students thought it made sense to draw two short lines of equal length 
to represent the equivalent relationship of two sides, so they quickly accepted this symbol. As such, the formal equal 
symbol can be easily understood, which is in line with RME theory. 

After the presentation of the content, the teacher used the quick quiz (Figure 2) to test students’ understanding of the 
equal sign. The teacher reported that out of 35 students in the class, about 90% of them correctly provided an equivalent 
number of objects on the left or right side. As mentioned, students’ success with this type of question could be an 
indicator that their conception of the equal sign has evolved beyond the one-directional ‘show results’ level (Matthews 
et al., 2012). Finally, the teacher concluded that “the emphasis of ‘two-side’ relationship is everywhere in this lesson 
plan, it is the most important thing when introducing equal sign”. This statement echoes my analysis of the lesson plan 
presented above.

CONCLUSION AND LIMITATIONS
Several features of the Chinese approach to introduce the equal sign can be concluded. First, introducing the equal sign 
before the formal arithmetic operations can reduce the interference of the ‘show results’ conception. Second, there 
is a ubiquitous emphasis on the ‘two-side’ equivalence, which stresses a bidirectional conception of the equal sign. 
Furthermore, the instructional sequence starts from students’ own experience and informal solutions, and continues to 
formal mathematical symbols. Finally, the way of drawing an equal sign (i.e., two short horizontal lines with the same 
lengh) is highlighted.

The Chinese approach has implications for Australian mathematics classrooms. In fact, there have been some activities 
designed by Australian primary teachers to develop the bidirectional sense of the equal sign. For instance, the dice 
comparison game by Russo (2016) and balance beam activity by Perso (2005) showed positive results. Following from 
these studies, I suggest that it is still possible that Australian mathematics educators can borrow ideas from the Chinese 
approach. For example, in the current Australian curriculum, number sense (e.g., ordering numbers) is introduced before 
formal addition and subtraction (Australian Curriculum, Assessment and Reporting Authority, n.d.). I recommend that 
when teaching number sense, teachers let students compare numbers and take this opportunity to introduce the equal 
sign. By doing this, the one-directional misconception elicited by traditional arithmetic operations could be further 
reduced. Moreover, highlighting the way of drawing the equal symbol is also helpful to reinforce the bidirectional 
conception. 

In terms of limitations, due to ethical restrictions, I was unable to conduct student or teacher interviews. More insights 
could be gained if more students and teachers’ voices were included.

REFERENCES
Australian Curriculum, Assessment and Reporting Authority. (n.d.). Australian Curriculum: Mathematics. Retrieved 
from https://www.australiancurriculum.edu.au/f-10-curriculum/mathematics/ 

Blanton, M., Stephens, A., Knuth, E., Gardiner, A. M., Isler, I., & Kim, J.-S. (2015). The development of children’s 
algebraic thinking: The impact of a comprehensive early algebra intervention in third grade. Journal for Research in 
Mathematics Education, 46(1), 39-87. doi:10.5951/jresematheduc.46.1.0039 



THE MATHEMATICAL
ASSOCIATION OF VICTORIA

57

Carpenter, T. P., Franke, M. L., & Levi, L. (2003). Thinking mathematically: Integrating arithmetic and algebra in 
elementary school. Portsmouth, NH: Heinemann.

Clarke, D. (2001). Complementary accounts methodology. In D. Clarke (Ed.), Perspectives on practice and meaning in 
mathematics and science classrooms (Vol. 25, pp. 13-32).  Berlin, Germany: Springer Science & Business Media.

Filloy, E., & Rojano, T. (1989). Solving equations: The transition from arithmetic to algebra. For the Learning of 
Mathematics, 9(2), 19-25. Retrieved from https://flm-journal.org/ 

Kieran, C. (1981). Concepts associated with the equality symbol. Educational Studies in Mathematics, 12(3), 317-326. 
doi:10.1007/BF00311062

Kieran, C. (2004). Algebraic thinking in the early grades: What is it? The Mathematics Educator, 8(1), 139-151. 
Retrieved from http://tme.journals.libs.uga.edu/index.php/tme/index

Knuth, E., Stephens, A., Blanton, M., & Gardiner, A. (2016). Build an early foundation for algebra success. Phi Delta 
Kappan, 97(6), 65-68. doi:10.1177/0031721716636877

Li, X., Ding, M., Capraro, M. M., & Capraro, R. M. (2008). Sources of differences in children’s understandings of 
mathematical equality: Comparative analysis of teacher guides and student texts in China and the United States. 
Cognition and Instruction, 26(2), 195-217. doi:10.1080/07370000801980845 

Matthews, P., Rittle-Johnson, B., McEldoon, K., & Taylor, R. (2012). Measure for measure: What combining diverse 
measures reveals about children’s understanding of the equal sign as an indicator of mathematical equality. Journal for 
Research in Mathematics Education, 43(3), 316-350. Retrieved from https://www.nctm.org/publications/journal-for-
research-in-mathematics-education/

McNeil, N. M. (2008). Limitations to teaching children 2 + 2 = 4: Typical arithmetic problems can hinder learning of 
mathematical equivalence. Child Development, 79(5), 1524-1537. doi:10.1111/j.1467-8624.2008.01203.x

McNeil, N. M., Fyfe, E. R., & Dunwiddie, A. E. (2015). Arithmetic practice can be modified to promote understanding 
of mathematical equivalence. Journal of Educational Psychology, 107(2), 423-436. doi:10.1037/a0037687

Molina, M., & Ambrose, R. (2006). Fostering relational thinking while negotiating the meaning of the equal sign. 
Teaching Children Mathematics, 13(2), 111-117. Retrieved from https://www.nctm.org/publications/teaching-children-
mathematics/

Pang, J., & Kim, J. (2018). Characteristics of Korean students’ early algebraic thinking: A generalized arithmetic 
perspective. In C. Kieran (Ed.), Teaching and learning algebraic thinking with 5-to 12-year-olds (pp. 141-165). New 
York, NY: Springer.

Perso, T. (2005). Algebra outcomes for your K–9 class. In M. Coupland, J. Anderson, & T. Spencer (Eds.), Making 
mathematics vital: Proceedings of the Twentieth Biennial Conference of the Australian Association of Mathematics 
Teachers (pp. 209-216). Adelaide, Australia: Australian Association of Mathematics Teachers. 

Russo, J. (2016). Using picture story books to discover and explore the concept of equivalence. Australian Primary 
Mathematics Classroom, 21(2), 26-31. 

Schwarzkopf, R., Nührenbörger, M., & Mayer, C. (2018). Algebraic understanding of equalities in primary classes In C. 
Kieran (Ed.), Teaching and learning algebraic thinking with 5-to 12-year-olds (pp. 195-212). New York, NY: Springer.

Seo, K.-H., & Ginsburg, H. P. (2003). “You’ve got to carefully read the math sentence…”: Classroom context and 
children’s interpretations of the equals sign. In A. J. Baroody & A. Dowker (Eds.), Studies in mathematical thinking and 
learning. The development of arithmetic concepts and skills: Constructing adaptive expertise (pp. 161-187). Mahwah, 
NJ: Lawrence Erlbaum Associates. 

Van den Heuvel-Panhuizen, M., & Drijvers, P. (2014). Realistic mathematics education. In S. Lerman (Ed.),  
Encyclopedia of mathematics education (pp. 521-525). New York, NY: Springer.



THE MATHEMATICAL
ASSOCIATION OF VICTORIA

58

Peer reviewed 
papers



THE MATHEMATICAL
ASSOCIATION OF VICTORIA

59

Annotated student work samples provide a way of seeing examples of work that students do when they demonstrate 
achievement of aspects of standards with respect to tasks related to the curriculum. The VCAA has developed and 
published a new set of annotated student work samples during 2019 and aims to progressively develop and publish 
others in 2020. This paper provides an introduction to these new resources and looks at how they could be used 
to support the implementation of the curriculum, including how schools might use a similar approach to develop 
complementary school-based annotated student work samples. 

INTRODUCTION
Annotated student work samples are one of a range of resources that education systems develop to support teachers 
in the implementation of the curriculum and assessment of student learning. Providing student samples for educators 
on aspects of the Victorian Mathematics F-10 Curriculum assists with supporting teacher clarity with Content 
Descriptions and Achievement Standards (Adie & Wills, 2014). Enriching teacher vocabulary with regards to the 
Victorian Curriculum through sample annotations allows for clarity with the content being taught and effective 
feedback to students on their learning (Ball, 2010). Annotated student work samples have previously been developed 
for the Curriculum and Standards Framework II (Victorian Curriculum and Assessment Authority, 2000), the Victorian 
Essential Learning Standards (Victorian Curriculum and Assessment Authority [VCAA], 2007), and the Australian 
Curriculum: Mathematics F-10 (Australian Curriculum, Assessment and Reporting Authority, 2014). 

This new set of annotated student work samples, of which the first batch has been recently published by the VCAA 
(VCAA, 2019), have been developed for the Victorian Curriculum: Mathematics F-10 (VCAA, 2016b) to be indicative 
of the thinking and writing students do when working on specifically developed tasks designed to elicit responses that 
demonstrate achievement of aspects of the standards at a given level of the curriculum.

The annotations were constructed using moderated observations, experience and judgments of teachers across multiple 
schools and classes. All students undertook the same task integrated within the school planned teaching and learning 
sequence of activities in mathematics for that level of the curriculum. The first batch, published at the beginning of 
Term 3 in 2019, covers a sample for each of Levels 3, 5, and 7 from Number and Algebra, and a sample for Level 9 from 
Measurement and Geometry. The second batch, planned for publication in the latter part of Term 4, aims to complement 
the 2019 examples and cover a sample for each strand at Levels 3, 5, 7, and 9. Subsequent similar work could also be 
developed for corresponding annotated student work samples across each of the strands for Levels F, 1, 2, 4, 6, 8, and 10.

SUMMARY OF RESOURCES
Annotated student work samples have been published on the VCAA website in the following structure:

Level Strand Sub-strand Activity
Level 3 Number and Algebra Number and place value What is my place?
Level 5 Number and Algebra Patterns and algebra What is missing?
Level 7 Number and Algebra Number and place value, 

Real numbers
Over and under estimates

Level 9 Measurement and 
Geometry

Pythagoras and 
trigonometry

When three sides work

Table 1. Term 3, 2019 publications.

VCAA mathematics annotated work  
samples F-10
Crystal Afitu and David Leigh-Lancaster, Victorian Curriculum and Assessment Authority
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Level Strand Sub-strand Activity
Level 3 Measurement and geometry Measurement What time is it?

Statistics and probability Statistics What is your favourite?
Level 5 Measurement and geometry Geometry Shape up!

Statistics and probability Probability What are the chances?
Level 7 Measurement and geometry Measurement Finding areas?

Statistics and probability Statistics Mean, median and mode
Level 9 Number and algebra Patterns and algebra This expression is the same 

as that expression when…
Statistics and probability Probability Matching digits

Table 2. Term 4, 2019 publications.

THE STRUCTURE OF ANNOTATED STUDENT WORK SAMPLES
The annotated student work samples have been developed to demonstrate student achievement with regards to the 
Victorian Curriculum. 

The samples include:

•	 Lesson overview

•	 Links to the Victorian Curriculum content descriptors and achievement standards

•	 Links to the NAPLAN minimum standards for teacher reference

•	 Annotated student work samples describing the learning the student has demonstrated

•	 Where to next? Guidance as to which curriculum areas students may need to review to further develop their 
understanding of the curriculum. 

AN EXAMPLE
The template design of the annotated work samples has been developed in a simple to read format that can be easily 
accessed and interpreted by a range of people. The blank tasks can be downloaded by teachers for students to complete, 
should they wish to compare their students’ results with the published samples. The published samples demonstrate 
a range of typical student responses to the tasks that enable them to demonstrate the various ways a response could 
be given at that level. References to NAPLAN’s minimum standards have been made at Levels 3, 5, 7, and 9 so that 
teachers can identify expected student achievement within that ‘Band Level’. 

Teachers involved in the project participated in professional learning workshops on writing annotations aligned with the 
Victorian Curriculum and collecting work samples. Over several workshops and ongoing moderation sessions across a 
range of schools, they developed annotations relying on their experience and expertise with support from the VCAA.

Templates were designed to include direct hyperlinks to relevant aspects of the curriculum. They can be downloaded via 
PDF or Microsoft Word document on the VCAA website.
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Figure 1. Level 5 Number and Algebra annotated student work samples published on the VCAA website.

UNDERSTANDING THE SAMPLES – AN EXTRACT 
The annotated student work samples are developed for ease of use by a range of members of the community. The 
samples may be beneficial for parents, teachers, whole schools and community members who wish to view samples of 
work reflecting a particular aspect and level of the Victorian Curriculum. It is important to note the various ways that 
students have demonstrated their understanding to allow those using the samples to identify achievement. 

In the student excerpts extracted from published samples, the VCAA has published various ways a student can 
demonstrate correct responses. These images were extracted from Level 5 Number and Algebra, and display correct 
responses and strategies to calculate multiplication problems. 

LEVEL 5 NUMBER AND ALGEBRA

Content Descriptors: 

“Solve problems involving multiplication of large numbers by one- or two-digit numbers using efficient mental, written 
strategies and appropriate digital technologies” (VCAA, n.d., VCMNA183)

“Use equivalent number sentences involving multiplication and division to find unknown quantities” (VCAA, n.d., 
VCMNA193)

Achievement Standard:

“Students solve simple problems involving the four operations using a range of strategies including digital technology. 
They estimate to check the reasonableness of answers and approximate answers by rounding… They find unknown 
quantities in number sentences.”
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Figure 2. Using repeated addition in multiplication.

Figure 3. Using repeated addition and multiplicative thinking.

Figure 4. Vertical algorithm and explanation.

Figure 5. Using ‘guess and check’ and a vertical algorithm.

In the images, the students have demonstrated the correct answer using a range of strategies. They have all demonstrated 
the requirements of the Content Descriptors and the Achievement Standards from the Level 5 Victorian Curriculum 
Mathematics. Annotations were published in a separate colour and can be directly linked to the evidence of student 
learning to allow the reader to easily identify aspects of student achievement. 

HOW COULD ANNOTATED STUDENT WORK SAMPLES BE USED IN SCHOOLS?
There are several ways that the annotated student work samples could be used in schools, such as:

•	 providing individual teachers with access to a continuum of examples across the strands, including those 
corresponding to topics and levels for which they may not have taught

•	 as a basis for faculty/department/PLC/PLT discussions about how students demonstrate achievement of learning

•	 as a context for discussion about moderation in teacher judgment of student achievement, and possible directions for 
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further student learning

•	 linking them as resources to course plans

•	 identifying areas for professional learning

•	 as a stimulus to developing a school or network-based collection of annotated student work samples

•	 as a student sample within the classroom ‘what a good sample looks like’, setting standards with students

•	 assist with developing success criteria/ “I can” statements with students

While the task on which the annotated student work samples are based are short tasks, they can be used as activities 
within a regular teaching and learning program - blank versions of the tasks have been provided for this purpose. Schools 
and teachers may decide to incorporate these tasks as learning activities at specific times/stages when developing and 
planning teaching and learning programs, possibly in conjunction with the VCAA curriculum mapping templates 
(VCAA, 2016a) and/or the mathematics sample program (VCAA, 2017). They could also be used to provide additional 
information that informs assessment and reporting.

WHERE TO NEXT?
The annotated student work samples contain a ‘where to next’ section for teachers to determine which aspects of the 
curriculum a student may need to review and consolidate or advance towards a new learning goal. Connections have 
been made between content descriptors across the levels above and below the produced sample to enable teachers to 
identify the aspects of the curriculum that relate to the activity. 

The benefit of having this included in the samples is to enable teachers to differentiate their teaching and apply new 
learning goals for the student/s based on the response they gave in the task. The annotated student work samples can be 
accessed and edited using Microsoft Word. This enables teachers to use the format to create their own annotated student 
work samples for student portfolios and evidence of student learning. The tasks can also be edited and reproduced to 
allow teachers to use them to make connections between student learning and the samples produced by the VCAA.
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STEM-related careers are currently receiving a lot of attention, as we know that these fields are some of the fastest-
growing ones. Schools need to develop curriculum and programs to foster the skills in these associated disciplines and 
the ability to use these skills to solve problems and communicate solutions. It is often difficult to know where to start 
when faced with such a daunting concept and an already full curriculum. We have begun by creating links between Year 
7 mathematics and science. In this paper, activities to link the content areas of statistics and ecosystems, and algebra 
and forces have been explored.

INTRODUCTION 
It has been claimed that we, as a society, are on the cusp of a fourth industrial revolution (Marr, 2018). The growth of 
various technologies is increasing at an unprecedented pace. For economies to survive in such a world, citizens must 
be knowledgeable and adaptable. It has been suggested that many of the jobs of the future have not yet been invented 
and that the best way to prepare young people for this uncertain future is to equip them with the flexibility and critical 
thinking skills to adapt to a continuously changing workplace and world (Marr, 2018).

In recent years, there has been growing interest in the area of STEM education. It is a rising field in education with 
a great deal of government support. STEM education covers the specific knowledge and skills found in the science, 
technology, engineering and mathematics disciplines. It also encompasses the interrelationship between these areas, 
allowing learning to be delivered in an integrated way, encouraging a deeper engagement with each discipline (State 
Government of Victoria, 2018). With this integration, STEM education becomes a mechanism through which students 
can develop 21st century skills such as collaboration, communication, and creative and critical thinking.

In recent years, mathematics and science participation and achievement in senior years in Australia has declined. In 
2015, only one in ten Year 12 students completed an advanced mathematics subject and a rising proportion of high-
achieving students were choosing not to study mathematics in their final year of secondary education (Timms et al., 
2018). We, as educators and as a society, need to take action to ensure that the young people of Australia are prepared 
to meet the significant challenges and opportunities of the coming years. By incorporating STEM activities, we can 
hope to increase student engagement with mathematics through linking various key mathematical skills to real-world 
applications.

CREATING LINKS BETWEEN MATHEMATICS AND SCIENCE
While most educators recognise the need to incorporate STEM education and 21st century skills into the classroom, 
many ask how we can do this effectively. With an already crowded curriculum and, often, fixed structures and timetables 
in place in schools, it is hard to know where to begin this journey. At Mentone Girls’ Secondary College, one way we 
began was by creating links between mathematics and science at the Year 7 level.

The Victorian Curriculum remains structured around domain-based learning, despite the inclusion of the general 
capabilities. The challenge for educators is to choose what to include from each domain and how to integrate aspects of 
each discipline within the already crowded curriculum. It is important that students do not see mathematics education in 
isolation. While mathematics can, and should, be studied for its own inherent value, mathematics should also be seen as 
a tool for problem solving, and for understanding and interpreting the world (Timms et al., 2018).

English (2016) notes that while many have lauded the benefits of integration and an inter-relationship between STEM 
disciplines, this relationship thus far seems inequitable. Often the focus is on the areas of Science and Technology 
and with the integration of these subjects, we run the risk of increasing achievement in some areas at the expense of 
meaningful learning in others. Shaughnessy (2012) takes this notion further, suggesting that, “STEM education must 
involve significant mathematics for students. Otherwise, the M in STEM is silent. If we are going to promote STEM 
education, as mathematics teachers we must make the mathematics transparent and explicit.” (p. 324).

Creating links between Year 7 mathematics 
and science
Rochelle Dickson, Mentone Girls’ Secondary College
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In establishing connections between mathematics and science at a Year 7 level, we have been explicit in detailing the 
content covered from both curriculum areas and emphasising the many relationships between the disciplines. Following 
are descriptions of two of the relationships between mathematics and science that can be explored at the Year 7 level.

EXPLORING STATISTICS AND ECOSYSTEMS
There is a growing use of data in many fields including education, industry, business, and government. Not only is this 
an area of high job growth, but in a world of ‘fake news’, where information is readily accessible and statistics are used 
to convince an audience, students must be able to correctly interpret and analyse the information given to them. They 
must become discerning consumers of information, and much of this is related to an understanding of data and how it 
can be presented to either inform or mislead the public (Education Council, 2015).

The mathematics study of statistics can be linked to the study of ecosystems. The relevant Victorian Curriculum 
descriptors can be found below.

Level 7 Mathematics content descriptors (Victorian Curriculum and Assessment Authority [VCAA], n.d.-a)

•	 Identify and investigate issues involving numerical data collected from primary and secondary sources

•	 Construct and compare a range of data displays 

•	 Calculate mean, median, mode and range for sets of data. Interpret these statistics in the context of data

Level 7 and 8 Science content descriptors (VCAA, n.d.-b)

•	 Interactions between organisms can be described in terms of food chains and food webs and can be affected by 
human activity

•	 Collaboratively and individually plan and conduct a range of investigation types, including fieldwork.

•	 Construct and use a range of representations including graphs, keys and models to record and summarise data from 
students’ own investigations and secondary sources.

•	 Communicate ideas, findings and solutions to problems including identifying impacts and limitations of conclusions 
and using appropriate scientific language and representations.

While visiting a marine sanctuary students identified the organisms present and collected data, later returning to school 
to analyse this data using the knowledge gained from their mathematics and science classes. Prior to the excursion, 
in mathematics classes students were taught some basic information relating to graphical methods of displaying data, 
calculations of measures of centre and spread, and how to analyse and interpret data for a particular context. Meanwhile 
in science they explored the concept of ecosystems by considering abiotic and biotic factors, the interactions between 
organisms, how to construct food chains and webs, as well as possible impacts that humans may have on ecosystems.

Upon arrival at the marine sanctuary, students needed to work collaboratively to determine which data they wished to 
collect and to determine a timeline and task distribution to ensure that all data collection was completed. Students were 
required to:

•	 Identify the abiotic and biotic factors affecting the ecosystem.

•	 Choose one abiotic factor (such as air temperature or soil moisture level) and measure it at three different times.

•	 List all organisms observed.

•	 Use quadrat sampling at three locations to sample organisms found upon the rocky platform and categorise their 
findings by individual organism, kingdom, or another method of their choice.

•	 Measure the leaf lengths of various coastal plants (to later be compared to inland plant leaf lengths).

•	 Identify signs of human impact on the ecosystem.
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In the following week at school, students then chose the appropriate form of graphical display, constructed graphs with 
and without the use of technology, calculated mean, median, mode and range, analysed and compared their data. They 
also created food webs for the organisms observed and considered the impact of human intervention upon the food web 
created and on the ecosystem in general.

Finally, all pertinent information was summarised on a poster, clearly identifying particular trends and communicating 
their findings to other members of the school. Two such posters can be seen below.

Figure 1. A student’s final poster.

Figure 2. Another student’s final poster.
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Many of our students were highly engaged with this process and could use statistical information and graphs to analyse 
their results. While some had difficulties selecting the most appropriate format in which to present different data types, 
many were able to both select an appropriate graphical format and explain the reasoning behind their choice. Students 
were able to compare and use measures of centre to draw conclusions relating to their data.

INVESTIGATING EQUATIONS AND FORCES
The Victorian Curriculum for Level 7 and 8 Science (VCAA, n.d.-b) includes the content descriptor:

•	 Change to an object’s motion is caused by unbalanced forces acting on the object.

The Level 7 mathematics curriculum (VCAA, n.d.-a) includes the content descriptors:

•	 Introduce the concept of variables as a way of representing numbers using letters

•	 Create algebraic expressions and evaluate them by substituting a given value for each variable

•	 Solve simple linear equations

The lesson created integrates these concepts by investigating the forces acting on a wooden block in motion, and the 
coefficient of friction. As this lesson was aimed at Year 7 students, the equations of motion were relatively simple.

The lesson embraced the study of mechanics usually introduced only in VCE Specialist Mathematics, which includes 
the study of equations of motion developed from force diagrams (VCAA, 2015). It allowed students to explore 
these concepts to show how the forces acting on a body can be represented through variables and equations. Prior to 
commencing this lesson, students had been studying forces in Year 7 science and had learnt how to construct force 
diagrams and describe forces such as gravity, the normal reaction and friction. Through their work in mathematics 
classes students had developed their understanding of pronumerals, substitution and evaluation of formulae and solving 
simple equations using inverse operations or backtracking.

Through the investigation into the coefficient of friction, students were introduced to the concept of weight force, 
where weight equals mass multiplied by gravity. They needed to construct force diagrams, resolve forces parallel and 
perpendicular to the horizontal plane and measure the effect of friction by pulling a wooden block along a variety of 
surfaces using a spring balance. Throughout this activity, we were explicit in relation to the aspects of mathematics and 
science that students were utilising, assisting them to recognise the connections between these two areas.

Learning Activity/  
Questions to the Class

Student Responses and 
Opportunities for Further Teaching

Curriculum Connections

Suppose we are dragging a wooden block along some carpet.
Draw a diagram and label all forces 
acting on the wooden block.

Some students labelled the weight 
force simply as gravity. This 
presented a good opportunity to speak 
about how weight force will change 
due to the mass of the object, by 
asking questions such as “Is it harder 
to lift some objects up than others?” 
and “Why is this the case when the 
force of gravity remains constant?”

Science: Identify the forces acting 
upon a body in motion and label the 
forces appropriately.

Mathematics: Use pronumerals to 
represent variables. 
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Think about the moment when the 
block is not moving. What does this 
mean about the forces?

Students were able to say that 
the forces were balanced, but 
many needed prompting to think 
about how this could be displayed 
algebraically. The idea that ‘balanced’ 
is synonymous to ‘equal’ was clear 
to some students but not to all, 
despite the balance method of solving 
an equation having been taught 
previously.

Science: Consider when forces are 
balanced and unbalanced.

Mathematics: Set up simple 
equations.

Think about when the block is moving 
at a constant speed. What does this 
mean about the acceleration of the 
block and the forces acting on it?

The idea that forces can be balanced 
when an object is moving was quite 
new. This allowed for the exploration 
of the concept of acceleration and 
could also lead to a brief discussion of 
Newton’s Laws.

Science: Consider when forces are 
balanced and unbalanced.

Write an equation to represent the 
vertical forces acting on the block.

Through identifying the forces and 
assigning appropriate pronumerals, 
most were able to determine R = mg.

Where R is the Normal Reaction 
force, m is the mass of the object and 
g acceleration due to gravity.

Science – Consider when forces are 
balanced and unbalanced.

Mathematics: Set up simple 
equations.

Write an equation to represent the 
horizontal forces acting on the block.

Most were able to determine f = P, 
where f is the frictional force resisting 
motion and P is the pulling force.

Science: Consider when forces are 
balanced and unbalanced.

Mathematics: Set up simple 
equations.

The friction force is calculated using the formula f = μR,where μ is the coefficient of friction (related to how rough the 
surface is) and R is the normal reaction force.

Calculate the value of R for your 
block.

Students discussed how to calculate 
R. They needed to come up with a 
method to calculate the mass of their 
chosen wooden block.

Mathematics: Substitute values into 
formulae and evaluate expressions.

Science: Select and use appropriate 
equipment.

You will now experiment on at least 
three different surfaces to determine 
the coefficient of friction. Choose 
three different surfaces. In each 
case, use a spring balance to pull 
the wooden block along the surface. 
Record the force when the block is 
in equilibrium (moving at a constant 
rate). For each surface record the 
frictional force three times and 
calculate the average. 

It was important the students pull the 
spring balance at a constant speed in 
order to use their balanced equations. 
This ensured that they would 
calculate kinetic friction rather than 
static friction.

They chose a variety of surfaces 
including the science benches, the 
linoleum floor, carpet, concrete and 
grass.

Mathematics: Calculate the mean of a 
set of data.

Science: Select and use appropriate 
equipment. Increase the reliability of 
results.
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Use the formula  f = μR. Substitute 
your value of f and solve the equation 
to calculate the coefficient of friction 
for each surface.

Many students had trouble solving 
these equations. While still a simple 
linear equation, the inclusion of 
decimals (resulting from their 
experiments) lead to some confusion. 
This offered a great opportunity to 
reinforce the language of inverse 
equations. 

While results would not have been 
accurate, the size of the coefficients 
did increase according to the apparent 
roughness of each surface.

Mathematics: Substitute values into 
formulae and solve simple linear 
equations.

If the wooden block is moving, we can use the formula F = ma to calculate the acceleration of the block. Choose one 
of the surfaces that you have already investigated and complete the steps below. Assume that you now pull the wooden 

block with a force of 2N.
Use the formula F = ma and solve the 
equation to calculate the acceleration 
of the block

The concept of F as the net force 
acting on the body needed to be 
introduced, leading to the idea that 
in this case F = 2 – f. Once students 
grasped this idea, they were usually 
able to substitute values into the 
formula and solve the equation to 
determine acceleration.

Mathematics: Substitute values into 
a formula and solve simple linear 
equations.

Science: Consider the meaning of 
acceleration.

Investigate how changing the pulling 
force will change the acceleration of 
the block.

i.    Choose at least three different 
values for the pulling force.

ii.   Substitute into the formula and 
solve the equation to calculate the 
value of a in each case.

iii.  Write a sentence to summarise 
what you found out. 

Investigating the effect of a parameter 
in this way is now part of School 
Assessed Coursework in Unit 3 and 4 
mathematics. This allows students an 
early introduction to this concept. 

The idea could be extended further, 
with students instead investigating 
how altering the mass of the block 
could affect the acceleration on their 
chosen surface.

Mathematics: Substitute values into 
a formula and solve simple linear 
equations. Investigate the effect of a 
parameter on a particular situation.

Science: Consider the meaning of 
acceleration.

Overall, students responded positively to this activity and were able to build connections between mathematics and 
science. The difficulty experienced by students solving equations involving decimal numbers suggests that our emphasis 
on introducing equation solving using natural numbers may not ultimately be beneficial to student understanding. When 
conducting experiments or dealing with real-world situations students must begin to realise that it is unlikely that all 
solutions will be whole number values, and should be able to interpret and work with all real numbers.

CONCLUSION
Mathematics, while beautiful in its own right, can often be most useful in its ability to further the understanding and 
analysis of scientific concepts. Building connections between mathematics and science is a useful way for schools 
to begin the STEM journey, but to fully embrace the power of STEM education the next step is to integrate the other 
elements such as engineering and technology. This allows students the freedom to choose a real-life problem to solve, 
using various discipline-based skills as well as the 21st century skills of critical and creative thinking, communication 
and collaboration. In Australia, most educators are only just beginning to see the possibilities and determine the logistics 
of creating open-ended experiences for students. 
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Connecting probability
Heather Ernst and Anna Morton, Federation University Australia

Probability is an important part of our lives. Learning probability increases relevance and engagement in mathematics, 
however students’ understanding of it is often mixed with misconceptions. This article aims to share ideas about teaching 
probability from the current literature and our experiences as teachers of primary, secondary and university students. 
The problems of learning probability are summarised. Ideas for teaching probability are described, along with how it 
can be connected to other mathematics topics, the proficiencies, and cross-curriculum areas. An example of probability 
incorporating measurement is detailed, explaining how teachers can develop concepts to prepare younger students for 
probability in Year 11 and 12 Mathematics.

THE PROBLEM WITH PROBABILITY
Probability is an important part of our lives. Understanding and using probability concepts can improve our financial 
decision making, sport, health, and even what we wear each day (Kahneman, 2012), but it is last on our list of topics in 
the curriculum, and often taught last in the year if we have time. There are a number of factors that could explain and 
contribute to this situation. Firstly, school mathematical concepts can be generally demonstrated by the use of physical 
objects, however probability cannot be modelled with certainty, due to randomness (Gomez-Torres, Batanero, Diaz, & 
Contreras, 2016). 

Secondly, students confuse the three types of probability: frequentist/experimental, classical/theoretical and 
subjective probability (Batanero, 2014; Truran, 2016). Teachers need to clarify which probability they are using. 
While experimental probability will tend towards the theoretical probability in the long term, it cannot be relied on 
with a smaller sample. Subjective probability is still a factor confusing students’ learning. For example, even adult 
conversations include ideas such as lucky numbers, dice, colours and throws.

Thirdly, a number of misconceptions surround the learning of probability (Ang & Shahrill, 2014; Fischbein & Schnarch, 
1997). The representativeness misconception assumes a sample will contain the same proportion of outcomes as the 
population. The gambler’s fallacy assumes outcomes are affected by previous outcomes. The conjunction fallacy 
suggests combined events are more likely than the individual events. Equiprobability bias views random events as 
equally likely. The frequency of the misconceptions of the effect of sample size and the availability heuristic, which is 
based on personal experience, both increased in older students, from Grade 5 to college students (Fischbein & Schnarch, 
1997). Equally, probability is full of paradoxes and can seem counter-intuitive (Kahneman, 2012) as shown by examples 
such as the Monty Hall problem, which involves a game show where the outcome seems to improve if you change 
your mind (Edwards, 2012); the birthday problem, where the chance of a friend with a birthday on the same day seems 
usually high; and the chance of a baby being a boy seeming to depend on the day of the week the brother is born (Guan, 
2011; Taylor & Stacey, 2014). 

Finally, the probability curriculum develops slowly in quantity and complexity over curricular Years 1 to 10, however it 
increases quickly in Years 11 and 12, specifically in Mathematical Methods. Level 1 uses everyday language and events, 
building to Year 7, with assigning probabilities and single-step equally-likely outcomes, then in Year 10, develops into 
students working with up to three-step experiments, with and without replacement and conditional statements. Year 11 
and 12 Mathematical Methods leaps ahead to include many new abstract concepts: combination, discrete and continuous 
probability functions, binomial and normal distributions, and the recently introduced topics of statistical inference, 
sampling and confidence intervals. This increase in content and complexity of probability could be better supported by 
increasing the content in Years 7 to 10, by integrating probability into other areas of the curriculum. The new complex 
concepts of sampling and confidence intervals can be introduced in a practical, concrete format before Years 11 and 
12. Thus this paper first sets out several ways to connect probability into other topics within mathematics and cross-
curriculum areas and then details a measurement example. 
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CONNECTING PROBABILITY
The following ideas for connecting and integrating probability into various curriculum areas are drawn primarily from 
the literature, and our experience in teaching primary, secondary and pre-service teachers. 

Students’ learning of probability can be hampered by their poor fraction, decimal and percentage skills, but these topics 
can be used to initiate conversations about chance, and vice versa. For example, when students draw coloured fraction 
pies as part of the fractions topic, they can then be made into spinners. Spinners are important as they can be designed 
so the probabilities are not equally likely, which help overcome a common misconception (Callingham, 2000). For 
example in Figure 1, in the spinner on the left, red is twice as likely as blue or green. The yellow section, in two spinners 
on the right, can be used to show one third equals two sixths.

Figure 1. Spinners showing fractions and probabilities.

Using probability language accurately by all teachers in any class can increase understanding. For example, “The chance 
of a visitor tomorrow is very likely” and “It will probably rain tomorrow”. Another idea is that as a teacher calls names 
off icy-pole sticks to answer questions (on any topic), they could also ask, “What is the chance of calling on a student 
who is absent?” 

When constructing 3D shapes in geometry, students could experiment as to the likelihood of rolling the shape onto 
particular sides. How many tosses would be needed to find the experimental probability? With spinners, dice, cards and 
marbles the theoretical probability can be calculated and compared to the experimental probability, but with unusual 
shapes, using experimental probability is the only way. It is important to include shapes and experiments with uneven 
probability, to address the equally likely misconception. Dropping drawing pins to see the chance of the pin landing 
point-up is another example of uneven experimental probability (Gomez-Torres et al., 2016).

Games to increase fluency like Bingo, and matching cards are engaging and can be further developed to support the 
understanding of probability. For example, frequency and probability can be used when the students make their own 
Bingo boards. Nisbet and Williams (2009) use the example of multiplication Bingo, where the students investigate 
which numbers are likely answers when they design their own Bingo boards. The probability can be highlighted from 
other games like Greedy Pig, snakes and ladders, or matching cards. Arcade games, both electronic and cardboard 
(Leavy & Hourigan, 2015), can be used to compare theoretical and experimental probability, using premade games, and 
the games the students design themselves. 

As playing card and board games are being replaced by electronic games as entertainment, using these tried and true 
probability games as learning activities are more important than ever: dice, cards, spinners, and marbles in a jar. Teachers 
can use these engaging games to teach interpersonal skills as well as a variety of mathematical concepts. Popular 
current trends can be used to advantage. Supermarket plastic tokens are examples. Is the probability of collecting each 
plastic toy the same? How can you tell? How many toys would you need to collect the whole set? What is the cost of the 
groceries involved? (Attard, 2015). 
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Newspaper reports on environmental issues were used as engagement prompts by Watson and English (2015) to link 
current issues with probability and statistics. Students subsequently planned, implemented, and reported on surveys 
of their peers on environmental issues, and compared them to Census At School data. The follow-up discussion on 
sample size, survey techniques, and the interpretation of results was important to develop a deeper understanding of the 
statistics, probability and the cross-curriculum issue.

Gambling is one area of probability that teachers are hesitant to teach, at the risk of encouraging it by providing engaging 
gambling activities that arguably may result in attraction to gambling and possible addiction. Victorian Responsible 
Gambling Authority (2016), with the support of MAV, has created a valuable resource for teachers of cross-curriculum 
units of work for Years 9-12 to support teachers of numeracy, literacy, health and humanities teachers in this important 
topic. In the numeracy section, guided inquiries use Excel simulations to investigate overall trends rather than wins. Five 
lessons spanning gambling with cards, pokies, sports betting and horse racing, explain the concepts and terminology 
behind gambling and then provides simulations with cards, coins and spreadsheets. Betting situations are role-played 
with and without betting agencies, to discover the long term expected winnings. Structured worksheets are provided for 
teachers, with the detailed dynamic colour-coded spreadsheets and graphs supplied. Reflection questions conclude each 
lesson to clarify the key points of the lessons, including the important point that the only long-term winners in sports 
gambling are the bookmakers.  

The use of technology and coding can be linked to probability. Lukac and Engel (2010) describe how an Excel 
spreadsheet can be used to simulate dice rolls, and combined dice rolls, where the data is collected and displayed in 
many ways. The Excel instructions are included in this article (Lukac & Engel, 2010). Electronic games can be used for 
probability, as Mills (2016) demonstrated with Minecraft. A wolf in the Minecraft computer game has a probability of 
1/3 of being tamed with a bone, and the students asked how many bones would be needed for various tasks. 

Having briefly set out several ideas, we now turn to a more detailed discussion of an example of teaching probability 
using measurement.

CONNECTING PROBABILITY TO MEASUREMENT
Whenever we measure anything, we can incorporate probability. Watson and Wright (2008) use the measurement of 
a student’s arm span to introduce variation. The length of a student’s arm span is difficult to measure, partly because 
bodies and arms move, influencing the accuracy of measurements. The accuracy and confidence in measurements were 
discussed and then graphed using the computer software TinkerPlots (Konold & Miller, 2011). This computer software 
is flexible, intuitive, and easy to use and interpret. Several graphing activities included: the variation of arm span of 
one student, of a whole class, between class comparisons, and finally a comparison of arm span and heights using line 
regression. This idea could have used CAS calculators instead of TinkerPlots. Variation around measurements will now 
be explored without the use of technology.

PACE LENGTH AND FITBITS

Fitbits have been a trend in our schools, with students involved in setting step targets for their health programs. Fitbits 
can be calibrated to convert the steps taken to meters or kilometres travelled, but how far is a pace? Measuring one pace 
is difficult. Students take bigger and smaller steps depending on the surrounds and how fast they are moving. After 
discussion, several measurements of pace length of one student were taken under different conditions, so a discussion on 
accuracy and confidence levels would occur. The ten measurements were displayed on a Post-it note graph (Figure 2). 
Students made statements like, “The probability of a step being bigger than 80 cm is 0.2”. Using mathematical symbols: 
Pr (Pace of Ashley > 80) = 0.2. The most appropriate average was discussed, mean, mode, or median. The Fitbit could 
now be calibrated, and the measurement or Health/PE activity resumed.

The average pace lengths of a class of students were compared and graphed. The students’ names on Post-it notes 
constructed a physical, personal graph (Figure 2). Statistics and probabilistic language were both used. Students 
described “six out of twenty students had a pace less than 80”. The teacher wrote: The probability of a random student’s 
pace length of less than 80 cm is 6/20 = 3/10 = 0.3. Pr (Pace length from the class ≤ 80) = 0.3.
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Figure 2. Post-it note graphs, to contrast variation of a student compared to the variation of a class.

These examples of variation of one student’s pace length over several trials, compared to the variation of a class of 
students, helped informally explain the concepts of variation, sampling and confidence intervals needed for Years 11 and 
12 Mathematical Methods. Post-it notes as data points had the advantage of being able to be moved during the difficult 
task of selecting scales on the axis. Students initially see the graphs as bar graphs, then histograms, and with guidance 
can see probability distributions, where the area under the graph represents the probabilities. 

CONCLUSION 
There are many engaging learning activities in the literature incorporating probability, including how to avoid 
misconceptions. Teachers need not fear this important topic. Probability can be integrated into many areas of the 
mathematics curriculum and also incorporated into cross-curriculum areas. Activities both with and without technology, 
teacher or student-designed, can support learning in mathematics, reasoning and interpersonal skills. Consistent use of 
accurate language by all teachers will support the understanding of probability and it is important to include the concepts 
of chance and probability into incidental classroom activities throughout all levels of schooling. Mathematics teachers 
can include the Year 11 and 12 concepts of probability in a concrete but informal way, to support the students’ future 
understanding.
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The use of manipulatives in high school
Vicky Kennard, Australian Mathematical Sciences Institute

In my role as an Outreach Officer for the Australian Mathematical Sciences Institute (AMSI), I have been privileged 
to have worked in many classrooms across Australia, in both primary and secondary schools. I have also taught in 
the UK. My experiences have shown me that although many classrooms and schools are well stocked with interesting 
mathematical equipment of various types, they are rarely used outside of the early primary years. In this paper and 
presentation, I want to explore why this is so and what could we be doing in high school to make mathematics more 
accessible and engaging for students.

If you were to walk into a Prep classroom during a mathematics or numeracy lesson, you would probably see counters, 
MABs, Cuisenaire rods, etc. being used. As we move up the year levels, the number of manipulatives (or concrete 
materials) being employed in classrooms seems to decrease. There may still be dice or cards when we are doing 
probability but that is about all. There seems to be a general perception that manipulatives are for younger, or weaker 
older, students. It is rare to see them being used consistently in a secondary classroom. Uribe-Flórez and Wilkins (2010) 
found that there was a significant difference in usage depending on grade level, with very little use in higher primary 
grades and almost no use in high school.

Van de Walle, Karp, and Bay-Williams (2013) define manipulatives as “any object, picture, or drawing that represents 
the concept or onto which the relationship for that concept can be imposed. Manipulatives are physical objects 
that students and teachers can use to illustrate and discover mathematical concepts, whether made specifically for 
mathematics (e.g. connecting cubes) or for other purposes (e.g. buttons)” (p. 24). According to this definition, a 
manipulative is any object or representation that can help develop a concept or relationship. This is a very wide definition 
and will include pen and paper. When we use the term, in relation to teaching, we tend to picture equipment made 
specifically for the classroom or other physical objects. Today we are seeing the introduction of virtual manipulatives, 
which are representations of the physical objects made for computers and tablets. These can be ‘manipulated’ with 
a mouse or by touch. If we accept this wide definition, then we can see manipulatives being used throughout the 
curriculum, though it may only be a calculator, paper and pen, or the occasional use of dice in the higher grades.

Piaget, in his theory of constructivism, suggests that students construct knowledge and meaning from their experiences 
(Harlow, Cummings, & Aberasturi, 2006). Based on this pedagogical theory, the use of manipulatives in the classroom 
is thought to provide students with a physical experience of a concept from which they can then make meaning. 
Constructivist theory is also the basis of the Concrete, Representational, and Abstract (CRA) model (sometimes called 
the CPA – Concrete, Pictorial, and Abstract model). When using this approach manipulatives (concrete objects) are used 
to help students to visualise and acquire a physical experience of a concept. Then, as their knowledge and familiarity 
with the concept increases, they can move away from the physical object to making a representation, normally a picture, 
of the objects. These drawings/diagrams will become more sophisticated and abstract as the knowledge deepens and 
then students can be introduced (or will move naturally) to abstract or symbolic representations.

Using algebra tiles as an example: Using the tiles themselves is the concrete stage. The students spend time familiarising 
themselves with different tiles and how to arrange them to solve problems. They can then move on to a representational 
stage. This can be a diagram, photograph, or a more abstract drawing:

Figure 1. Example of algebra tiles.
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Not all students will move along this continuum at the same pace and it should not be seen as a linear progression. Some 
students may enter at the representational, or even abstract, phase and they may move back to the representational or 
concrete phase at different points. This model of instruction would be familiar to (most) lower-primary teachers and to 
teachers of special needs students but may not be so familiar to others. 

With problem-solving and reasoning being encouraged in the curriculum we need to give our students more tools for 
exploring ideas and ways to express their thinking. It is my contention that by removing manipulatives at an early stage 
in schooling and, therefore, restricting the tools we make available to students in the classroom, we are limiting the ways 
they can explore and communicate. By associating manipulatives with the younger years, we are also branding them 
as ‘babyish’ and as toys to be played with. We encourage students to move to the more abstract modes of thinking and 
visualising problems before they are ready. Similarly, counting using fingers, which neuroscience has now shown is so 
important for developing basic numeracy, is discouraged at an early age.

The research on the use of manipulatives, especially in older grades, does not seem to be conclusive as to their efficacy. 
There are many variables associated with their use and so it is difficult to compare and aggregate findings. Many teachers 
will say, anecdotally, that the use of a manipulative does improve the understanding of concepts especially when a 
concept is first introduced. But this is not always corroborated by the research. My contention is that the reason for this 
inconclusive research finding is that teachers are not using manipulatives with older years in the most effective way.

As with all tools they can be used well or not so well. From the research, here are some general tips for using 
manipulatives:

•	 When a new manipulative is introduced it is important to allow the students time to explore it for themselves – to 
play! This stage is important because you do not want the students to just copy what you the teacher, do. This would 
be the equivalent of just teaching the algorithm with no understanding. The aim of using the manipulative to develop 
understanding. (Van de Walle et al., 2014)

•	 When the teacher uses the manipulative to teach a concept, the teacher needs to make the mathematics very explicit. 
The same manipulative may be used to explore different concepts, at various times, so the teacher needs to be very 
clear on what the purpose for that lesson is.  

•	 The manipulatives should be easily and freely accessible. Often, they are stored in cupboards or resource rooms. The 
teacher will bring out a specific manipulative for a particular activity and then they will disappear. By having them 
readily available, a culture can develop where the students use them as, and when, they feel the manipulatives will 
be of use. Students may also use them in very innovative ways. Students should feel comfortable in using physical 
objects to help them explore and communicate ideas.

•	 Virtual manipulatives should be introduced after students have had a chance to ‘play’ with the physical manipulative 
equivalent. The physical nature of a manipulative is important and so virtual equivalents, although useful, do not 
have quite the same initial effect.

•	 If students have been using manipulatives in class and have not yet moved confidently to a representational 
or abstract mode, then allow the students to use the manipulatives during tests. Remember the calculator is a 
manipulative too!

Using a manipulative can also help to engage students who find mathematics too abstract and struggle to make sense of 
the concepts and symbols used. They add a sense of excitement and change to the normal classroom routine. However, 
it is important that they are not viewed just as toys with no serious purpose. In a study (Moyer, 2001), teachers perceived 
using manipulatives as ‘fun’ and used them as a reward, rather than ‘real’ mathematics. For a manipulative to be 
effective, it should be perceived as a serious part of the learning process. 

Teacher mindset and experience of using manipulatives is another important factor in the success or otherwise of 
manipulative use (Moyer & Jones, 2004). Encouraging students to use manipulatives to explain their thinking is a good 
formative assessment technique that can uncover misconceptions and knowledge gaps. There are some disadvantages to 
using manipulatives. These include classroom management issues such as the time taken to distribute and collect them, 
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storage and availability of class sets. Some of these can be overcome with familiarity and classroom routine. 

It is important that the teacher scaffolds the learning, as “teachers need to bridge the manipulatives to the 
representational and then abstract understanding in mathematics so that students internalize their understanding” (Furner 
& Worrell, 2017, p. 21). The teacher cannot expect that all students will make the transition from the concrete to the 
abstract without assistance and guidance.  

Using manipulatives is not a guarantee that the students will ‘see’ the concept. There needs to be guidance and explicit 
connections made by the teacher and they must be thoughtfully used and introduced (Baroody, 1989). In the high school 
setting particularly, not all students will feel the need or feel comfortable with using a concrete, physical object in 
mathematics. This is especially true when students have already developed the mindset that they are ‘babyish’. Students 
may also be able to move straight to the representational, or even the abstract phase. Teachers need to demonstrate, and 
believe, that using manipulates can help develop understanding in some topics and support students in constructing 
understanding. Studies have shown (Suydam & Higgins, 1977) that it is the way that manipulatives are used in the 
classroom and the attitude of the teachers involved that make the most difference to their effectiveness.

With a greater emphasis on STEM and problem solving in the curriculum being able to model, represent and explain 
ideas are skills that are becoming more important. Using manipulatives can be useful in developing these 21st century 
skills.

In conclusion, I believe that there is a place for the use of manipulatives across the mathematics curriculum and across 
all year levels and abilities. They are a powerful way for students to develop a deeper understanding of concepts and 
are engaging for students who find mathematics difficult and distant from their life experiences. We as teachers need to 
educate ourselves on how to use them in the classroom and how to manage their use by students.

Below is a list of some common manipulatives and how they could be used. I will be exploring some ways to use these 
manipulatives in a high school context in my session at the conference.

•	 Blocks: There are many different types of blocks available from simple, cube building blocks to snap together cubes. 
These are normally multi-coloured and approximately 2 cm cubes. These have so many uses but generally are used 
for counting, addition and subtraction, measurement, area, and patterning. 

•	 Cuisenaire rods: These are rods of different lengths and colours. They can be used for counting, addition and 
subtraction, multiplication and division, fractions, ratio and patterning.

•	 Simple abacus: There are two rows of ten beads, five of each of red and white. They can be used for counting, 
modelling numbers in different ways, number facts to 10 or 20, one more than, one less than, doubles, near doubles 
etc.

•	 Pattern blocks: These are six two-dimensional shapes in different colours. They can be used for exploring shape 
properties, symmetry, transformations, and fractions.

•	 Geometric solids: These are three-dimensional models that can be investigated, measured, and sorted.

•	 Counters: These range from simple, one colour, round counters to teddy bears and frogs. They can be used for 
counting, addition and subtraction, multiplication and division, fractions, ratio and patterning.

•	 Two-colour counters: These have a different colour on each side of the counter. They can be used as normal counters 
but also for introducing directed numbers and probability.
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•	 Clocks: These are many different types of clocks available. Using a clock with only the hour hand is a good way to 
introduce analogue time.

•	 Sorting circles: These are circles that can interlock to form a Venn diagram. They can be used to explore sorting by 
different attributes and probability.

•	 Geoboards: These are boards with pegs that can be used with rubber bands to explore shape, area, perimeter, 
transformations, symmetry, and congruency.

•	 Mirrors: These can be used to explore transformations, symmetry, and congruency.

•	 Rulers: These come in many different lengths and units. They can be used to explore measurement and unit 
conversion.

•	 Dice: There are many different dice available. These can be used to explore probability and data generation.

•	 Balance: There are different styles available, either hanging along the length or with a bucket at the end. These can 
be used for exploring mass and balancing equations/number sentences.

•	 AngLegs: These are plastic, snap together rods of different lengths and colours, with a snap-on protractor. They can 
be used for polygons, perimeter, area, angle measurement, side lengths, etc.

•	 Algebra tiles: These are two coloured tiles of different shapes and sizes: a small square, a rectangle, and a large 
square. They can be used for counting, addition, subtraction, multiplication, division, fractions, ratio, operations 
with directed numbers, algebraic equations, operations with linear and quadratic expressions, and linear and 
quadratic equations.

There are many more manipulatives that I have not included in this list, such as cards and number lines, that can be 
simply made. I have also not included the many games that have a strong mathematical component.
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Multiplicative thinking is a central pillar of mathematical learning in the primary and middle years. It forms the basis 
for understanding numerous topics such as proportions, patterns, ratios, fractions, and percentages. The development 
of algebraic thinking also relies on students having developed sound multiplicative thinking. However, the transition 
from additive thinking to multiplicative thinking is a challenge for many learners in the middle years, and is not a simple 
one-step process. The focus of this paper is to enhance teachers’ pedagogical content knowledge that supports students’ 
transition from additive to multiplicative thinking. It uses three perspectives of multiplicative thinking, which are 
isomorphism of measures, measure of units, and multiplicative actions independent of addition, to suggest four steps for 
teaching that progressively move students from additive to multiplicative thinking.

THE CONCEPT OF MULTIPLICATIVE THINKING 
Multiplicative thinking represents learners’ mental adaptive processing of multiplicative concepts by using different 
methods and approaches in various mathematical problem contexts (Singh, 2012). Multiplicative thinking allows 
learners to successfully grapple with mathematical problems across different topics that require understanding and 
application of multiplicative ideas. Researchers such as Brown and Quinn (2006) suggest that success in topics such as 
proportions, patterns, fractions, measurement, rates, percentage, as well as the development of algebraic and statistical 
thinking and understanding some complex issues in the society rely on multiplicative thinking. Studies by Siemon, 
Breed, Dole, Izard, and Virgona (2006) and Singh (2012) reveal that many conceptual stumbling blocks that learners 
encounter in the elementary and even middle school curriculum are related to poor understanding of multiplicative 
thinking. Askew et al. (2019) emphasise that multiplicative thinking is a critical area within primary mathematics and 
that strengthening attainment in this aspect of mathematics would create a more secure foundation for subsequent 
mathematics.

PERSPECTIVES OF MULTIPLICATIVE THINKING
Singh (2012) has presented three perspectives of multiplicative thinking and the cognitive structures necessary to 
understand it. These perspectives are isomorphism of measures, the measure of units, and multiplicative actions 
independent of additive ideas. They suggest the different ways in which children acquire and develop the knowledge 
of multiplicative thinking. Figure 1 shows five questions from the Butterfly House task (Scaffolding Numeracy in the 
Middle Years [SNMY], Siemon et al., 2006) that will be used to examine each of these perspectives and how teachers 
can use this task to progressively move learners from additive to multiplicative thinking.

Figure 1. Butterfly house task (SNMY, 2006).

From additive to multiplicative thinking:  
Key ideas for teaching
Mayamiko Malola and Max Stephens, The University of Melbourne



THE MATHEMATICAL
ASSOCIATION OF VICTORIA

83

ISOMORPHISM OF MEASURES

Isomorphism directs our attention to a relationship that remains the same between different units irrespective of the 
size of units. This perspective is represented by a structure consisting of the relationship between two measure units, 
for example, distance and time, and items purchased and their cost (Singh, 2012), or relationship between minutes and 
hours. It describes large number of situations in ordinary and technical life (Vergnaud, 1983). In addition, it involves 
proportional relationship between the two units involved. However, Singh (2012) maintains that this perspective can be 
applied and represented in different problem contexts at different levels of abstraction. With reference to the Butterfly 
House task, this perspective would address the relationship among the number of bodies, wings and feelers required to 
make a specified number of butterfly models. Given that one butterfly model requires one body, two feelers, and four 
wings, the information is represented in Table 1 below, and shows how students can use it find the number of wings, 
feelers, and bodies required to make any number of butterfly models.

Model(s) Body(ies) Feelers Wings
1 1 2 4
2 2 4 8
3 3 6 12
4 4 8 16
5 5 10 20
6 6 12 24
7 7 14 28

Table 1. Using proportional relationship to solve multiplication problems.

Table 1 uses Question 1a where students are told that each model butterfly requires one body, two feelers and four wings 
and asked to find the number of bodies, feelers and wings required to make seven models. They use the proportional 
relationship with the number of bodies, feelers and wings increasing at a constant rate with a constant increase in the 
number of models. Seven models will require 7 bodies, 14 feelers, and 28 wings. The seven-step approach, shown in 
Table 1, may be the starting point for many students. However, the isomorphism diagram (see Table 2) proposed by 
Vergnaud (1983) can be used to solve problems in a more effective and time-efficient manner.

1 model 1 body 2 feelers 4 wings
x 7 x 7 x 7 x 7

7 models ? ? ?

Table 2. Showing the application of proportional relationship.

Table 2, which refers to Question 1a, shows that instead of having to write the number of models from 1 to 7, students 
can find the relationship between 1 and 7. They find the relationship by establishing the arithmetic operation that has 
been used to get a 7 using 1. Students multiply the 1 by 7 to get 7. The 7 becomes the multiplier for the number of bodies, 
feelers and wings required to form one model butterfly in order to find the number of bodies, feelers and wings required 
to form 7 model butterflies. 

In some cases, understanding the relationship between the initial unit and the number of units provided in the question 
is important for effective problem solving in relation to multiplicative thinking. For instance, let’s look at question (1d) 
where students are provided with different numbers of wings, bodies, and feelers. How many butterfly models can they 
make?
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1 model 1 body 2 feelers 4 wings
X? X8 X6 = 12 X7 = 28

? models possible 8 bodies available 13 feelers available 29 wings available

Table 3. Finding number of models given number of bodies, feelers, and wings.

Table 3 presents question 1d where students are given 8 bodies, 12 feelers, and 29 wings, and required to find the number 
of models that can be formed. Looking at the multiplying factors we see that with 29 wings we can make 7 models, 
13 feelers can make 6 models and 8 bodies can make 8 models. The smallest multiplying factor should inform us the 
number of complete butterfly models we can produce given 8 bodies, 13 feelers, and 29 wings. In this case, the smallest 
multiplying factor of all units is 6. Students can make 6 a maximum of butterfly models since the number of feelers in 
this case determines the maximum number of models we can make.

THE MEASURE OF UNITS 

This perspective involves measure of units where students build on prior knowledge of multiplication and model 
the situations based on their schema (Singh, 2012). He suggests three levels of competency that students go through 
progressively from pre-multiplying scheme (pure repeated addition) to more abstract multiplication. These schemes 
are: (1) pre-multiplying scheme, (2) iterative multiplication scheme, and (3) scalar functional operator. In our view, 
these schemes are important milestones in the transitioning of learners from additive to multiplicative thinking and are 
described below.

Pre-multiplying scheme

This procedure uses additive strategy that is based on establishing the relationship within the given units and extending it 
to find unknown units or the units in question (Singh, 2012). 

Body Feelers Wings
1 model - 1 body 1 model -2 feelers 1 model - 4 wings
1 model - 1 body 1 model - 2 feelers 1 model - 4 wings
1 model - 1 body 1 model - 2 feelers 1 model - 4 wings
1 model - 1 body 1 model - 2 feelers 1 model - 4 wings
1 model - 1 body 1 model - 2 feelers 1 model - 4 wings
1 model - 1 body 1 model -2 feelers 1 model - 4 wings
1 model - 1 body 1 model - 2 feelers 1 model - 4 wings

7 model - 7 bodies 7 models - 14 feelers 7 models - 28 wings

Table 4. Pre-multiplying scheme using butterfly task question 1(a).

Table 4 refers to Question 1a where students specify the number of bodies, feelers and wings required to make 7 models. 
Students write down the requirements for one model 7 times, each with one body, two feelers, and four wings. The total 
number of bodies, feelers, and wings is obtained by adding up the components.

Body Feelers Wings
1 body - 1 model 2 feelers - 1 model 4 wings - 1 model
1 body - 1 model 2 feelers - 1 model 4 wings - 1 model
1 body - 1 model 2 feelers - 1 model 4 wings - 1 model
1 body - 1 model 2 feelers - 1 model 4 wings - 1 model

4 bodies - 4 models  8 feelers - 4 models 16 wings - 4 models

Table 5. Pre-multiplying scheme using butterfly task question (1b). 
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In Table 5, which refers to Question 1b, students were given 4 bodies, 8 feelers, and 16 wings and asked how many 
models can be formed. Table 5 shows that students repeatedly write down the requirements (bodies, feelers, and wings) 
to form one model Butterfly until all the bodies, feelers, and wings provided in the question are used to form complete 
four models. While this strategy might not be very efficient, it is a good starting point for learners in lower primary 
school and prepares them for a smooth move to iterative multiplication.

Iterative multiplication

This scheme involves repeated distribution of a quantity over another (Singh, 2012). 

Body Feelers Wings
1 model - 1 body 1 model - 2 feelers 1 model - 4 wings

2 models - 2 bodies 2 models - 4 feelers 2 models - 8 wings
3 models - 3 bodies 3 models - 6 feelers 3 models - 12 wings
4 models - 4 bodies 4 models - 8 feelers 4 models - 16 wings
5 models - 5 bodies 5 models - 10 feelers 5 models - 20 wings
6 models - 6 bodies 6 models - 12 feelers 6 models - 24 wings
7 models - 7 bodies 7 models - 14 feelers 7 models - 28 wings

Table 6. Iterative scheme using question (1e).

Unlike the pre-multiplying scheme in Table 5, each row in Table 6 contains the complete specification of bodies, feelers, 
and wings for any given number of models. This scheme allows students for example to specify the number of bodies, 
feelers, and wings required for 14 models (by doubling the last row) or by 70 models by multiplying the last row by 10. 
This is a big advantage over previous pre-multiplying scheme and a bridge to the third scheme.

Scalar functional operator

The scalar functional operator (Askew, 2018) involves proportionality that emanates from repeated addition. The 
scheme fosters students’ ability to move from fundamental iterative scheme that we discussed above to a more abstract 
level of understanding in multiplicative thinking (Singh, 2012). The relationship between the given units and the units 
in question was explored and used as the basis to solve the problem. Using the butterfly task question (1e), instead of 
repeatedly adding 2 butterflies and 5 drops each time respectively to obtain the number of drops for 12 butterflies, the 
scalar functional operator allows such a problem to be approached as follows:

2 butterflies need 5 drops of nectar
X6 X6

12 butterflies need ?

Table 7. Scalar function. 

The approach shown in Table 7 requires students to be able to abstract the result of many iterations to be captured by 
a known multiplication fact (Singh, 2012). The capacity to compress repeated additions into a single multiplication is 
instrumental in effective and logical transition from additive to multiplicative thinking. Development and understanding 
of multiplication facts and their application in solving diverse problems are also critical. With reference to question 
1e, figuring out the relationship between the 2 butterflies initially provided in the question and the 12 butterflies in 
question is an important step. Having to add 2 + 2 + 2 + 2 + 2 + 2 + 2 to get the 12 signifies heavy reliance on repeated 
addition. However, knowing that one can multiply the 2 by 6 (2 x 6) to get the 12, demonstrates a clear move towards 
multiplicative thinking. Since we have increased the number of butterflies six times, the corresponding number of drops 
of nectar should also be increased six times (i.e., 5 x 6). However, students will need to have a developed understanding 
of multiplication facts in order to find answers to 2 x 6 and 5 x 6. This is a remarkable step in the transition process as it 
builds on learners’ prior knowledge of additive thinking.
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MULTIPLICATIVE ACTIONS INDEPENDENT OF ADDITIVE IDEAS

This third perspective involves a higher level of abstraction in solving multiplicative problems without drawing on 
additive thinking. Actions and images are analysed using strategies such as partitioning and splitting to aid the solution 
(Singh, 2012). We view this perspective as the core purpose of all efforts on multiplicative thinking. Students need to 
effectively use multiplication actions without relying on additive ideas. Vergnaud (1983) referred to such students as 
multiplicative thinkers. The following solution strategies illustrate this level of multiplicative thinking.

98 model butterflies
Bodies Feelers Wings
98 x 1 98 x 2 98 x 4

Table 8. Multiplication independent of addition.

With 98 model butterflies and required to find the respective number of bodies, feelers, and wings required. Table 
8 shows how students can directly multiply the number of models (98) by the number of bodies, feelers, and wings 
respectively required for each model butterfly.

SUMMARY AND IMPLICATIONS FOR TEACHING
In this summary section, we present four steps that teachers can follow in order to progressively move learners from 
additive to multiplicative thinking.

PRE-MULTIPLYING 

Multiplicative thinking in children relies on additive thinking. Additive thinking moves from a simple count all to 
additive strategies that involve combining and skip counting. These refinements of additive strategies need to be 
carefully cultivated if students can transition more confidently to multiplicative procedures. In their instruction, teachers 
need to be aware that students’ informal knowledge of multiplication has basis on the idea of repeated addition. We 
suggest that teachers in Grades 1 and 2 should start with counting strategies before delving on addition. Teachers in latter 
grades should focus on activating students’ informal knowledge of addition with emphasis on repeated addition. This 
will lay a good foundation for the second step.

ITERATION 

This second step in the teaching of multiplicative thinking requires teaching activities to emphasize the development 
of the idea of groups of equal size, number of groups, and the total quantity. The teacher may involve learners in varied 
activities including the use of concrete materials, group work, and carefully selected mathematics games in order to 
facilitate students’ conceptualisation of the idea of groups. For example, using the nursery rhyme “Baa Baa Black 
Sheep”, students can draw a picture of 3 bags of wool for every sheep and ask how many bags of wool there will be 
for 5 black sheep. This problem can be investigated using a variety of iterative methods starting with count all, but all 
involving grouping and skip counting.

PROPORTIONAL RELATIONSHIPS

Teaching and learning activities should focus on establishing and developing understanding of proportional 
relationships between and among quantities as the sizes, numbers of groups and total quantity changes. For example, 
how many bags of wool would there be for 20 black sheep? The goal is to take learners to the final step where they use 
multiplication ideas in multiplicative situations without having to use additive thinking.

MULTIPLICATION INDEPENDENT OF ADDITIVE THINKING

Teachers should aim to take learners to a point where they can deal with multiplicative situations without having 
to think additively. Viewing multiplication as scaling rather than adding is a key aspect of thinking that need to be 
developed. Teaching activities in the classroom should focus on exploring all possible strategies that can be used to solve 
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multiplication problems without the use of additive strategies. For example, older students can consider the number 
of bags of wool for 100, 500, and other numbers of sheep. In this way, students will become competent multiplicative 
thinkers. 

In suggesting these four steps, it is helpful to take note of an “overlapping waves” theory that suggests that mathematical 
solution strategies do not replace one another in a linear fashion with less sophisticated strategies disappearing as 
new strategies are acquired. Instead, they wax and wane emerging from co-existing patterns in individuals. The steps 
suggested in this article may not represent the only way of fostering the transition from additive to multiplicative 
thinking, but they do suggest that young students should be introduced quite early to situations that foster multiplicative 
thinking even when students are still using additive procedures. Supporting students’ transition from additive to 
multiplicative thinking is a vital task for the teaching of mathematics in the early and middle years. Building teachers’ 
capacity in this area is fundamental to children’s continuing mathematical development.
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Simulations and data sources related to gambling can be used to cover all the Year 9/10 probability and statistics 
curriculum. Students learn that random numbers are unpredictable and that the longer they ‘play the pokies’ the less 
likely they are of ‘breaking even’. Real data sources on gambling losses – locally and beyond – provide opportunities for 
meaningful data analysis, representation and interpretation. Mathematics teachers can do their bit in helping students 
develop healthy attitudes toward gambling.

INTRODUCTION
Australia leads the world for gambling losses - $1,251 per adult in 2016-17 (Queensland Government Statistician’s 
Office, 2018). This is 75% more than for second-placed Singapore and more than double that for any other country (The 
Economist, 2017). Our adolescent generation is the first to be exposed to saturation marketing of gambling, particularly 
online betting - and mobile apps mean gambling is more accessible than ever before. On the Victorian Responsible 
Gambling Foundation (VGRF, 2019) website, Miller reports that “one in five adolescents play social casino games” and 
“one in ten young people gamble online”.

Gambling and mathematics education in Victoria first came together in Lovitt and Clarke (1988) The Mathematics 
Curriculum and Teaching Program where, in the rationale for engagement with social issues the authors argued, “if 
mathematics is to prepare pupils for the real world, then part of its presentation should address issues from the real 
world” (p. 89). The education authorities came on board when copies of Tout, Santburn, Kindler, Bini, and Money’s 
(2011) Consumer Stuff! Maths: A Resource for Teaching and Learning Numeracy, with a section on gambling, were 
distributed to all government secondary schools. Following this initiative, the Mathematical Association of Victoria has 
been successfully funded to trial curriculum resources dealing with the gambling issue in particular because:

•	 The mathematical aspects of gambling fit closely with the mathematics curriculum, so do not need to be seen as an 
additional burden on the crowded curriculum.

•	 Mathematics is studied by most of each year level cohort, with consequent opportunities and responsibilities for 
mathematics teachers.

A VCAL version of these resources is now available on the VRGF website (2019). The Year 9/10 version includes units 
focussing on electronic gaming machines (‘pokies’) and sports gambling (Money, Lowe, & Smith, 2015). Teachers’ 
notes and worksheets are available but this paper concentrates on a selection of the key spreadsheets that are central to 
the learning activities involved.

LESSONS USING THE SPREADSHEETS
The spreadsheets described below are recommended for use in lessons that include introductory hands-on activities 
and worksheets containing related sample data. Class discussion can follow the predict-observe-explain framework 
and, where appropriate, can diverge into a discussion of student attitudes to gambling. Key messages about gambling 
(particularly on the pokies and on-line gaming) are:

•	 ‘Chance has no memory’ – independent events, random numbers

•	 ‘The longer you bet, the less chance there is of breaking even’

•	 Australians lose too much on gambling. There are other ways of spending money.

BETTING ON THE CARDS
Four students, representing hearts, diamonds, spades, and clubs, bet $1 each on the suit of the next card. If the payout to 
the winner is $3, rather than the expected $4, then the students have their first experience of the hard truth of commercial 

Chance, data, and the gambling issue
Robert Money, Retired secondary teacher, and Ian Lowe, Educational consultant
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gambling, namely that the long term expected return to the gambler is less than 100%. The key equation is: 

Expectation = Price x Payout = 75% in this instance

Students enter data in the three yellow cells in the ‘Choose the suit’ (sampling without replacement) spreadsheet (Figure 
1) and commence rapid simulation. Discussion of the results can teach students that:

•	 Relative frequencies are variable – although they eventually get closer to the theoretical probability (1/4 in this 
case).

•	 ‘Chance has no memory.’: The suit of the next card (or the underlying random number) is independent of previous 
results.

•	 With an expectation of 75%, the longer you play this game, the less chance there is of making any profit.

Figure 1. One hundred trials of guess the suit, with a payout of $3.

POKIES SIMULATION
Students are shown the random numbers that determine the outcomes on the electronic gaming machines (‘pokies’) that 
inhabit local hotels and clubs. With the ‘house margin’ set at the typical 10% (Punter’s expectation = 90%), spreadsheet 
simulations show that an initial amount of $10 might be exhausted after 100 $1 bets, more so if you are lucky. At 10 bets 
per minute, the price of $10 would give approximately 10 minutes of ‘excitement’. Sharing data from this simulation 
will give a skewed distribution for students to predict-observe-explain the centres and spread.

Figure 2. Taking longer than expected to lose $10.
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Comparing results for 10 bets, 100 bets, and 1,000 bets, students will see that, despite variability, the longer you bet 
the less chance there is of breaking even. Some Year 10 students might estimate these chances through calculating the 
standard deviation for a sample of 1,000 bets at an expectation of 90%.

Figure 3. Less percentage spread gives no wins for 1,000 bets.

POKIES STATISTICS
Student statistical investigations can be based on data drawn from three key sites:-

•	 Victorian Commission for Gambling and Liquor Regulation (2018)

•	 Australian gambling statistics (Queensland Government Statistician’s Office, 2018)

•	 Victorian Responsible Gambling Foundation (2019) 

Of the many questions students might investigate some are:

•	 How does spending on pokies in Victoria and other states compare with spending on other forms of gambling?

•	 How much per adult is spent on different forms of gambling?

•	 Where is the most money spent on ‘pokies – in metropolitan areas or in the country?

•	 Who spends the most? How does spending correlate with socio-economic disadvantage?

•	 How many pokies machines are there in your Local Government Area and how much do they take from customers?

Use of the VCLGR gambling spreadsheets will test student skills in selecting and sorting data, summarizing with 
measures of centre and spread and in representing their summaries using the available choices of graph. Coordination 
with students’ studies of health and human relationships might allow students to also research

•	 What is problem gambling?

•	 What are the health and human relationship risks associated with problem gambling?

•	 How could you assist a friend or relative who had a gambling problem?
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PAYOUTS VS. PROBABILITIES
Advertised football payouts provide real data for student analysis. If payouts of Brisbane $1.65 vs. Melbourne $2.25 

represent chances of winning, then the ratio 
1
1.65

: 1
2.25  represents the odds of the two teams winning. 

These two fractions add up to more than 1, so the probability of Brisbane winning is

1
1.65

÷ 1
1.65

+ 1
2.25

⎛
⎝⎜

⎞
⎠⎟
= 2.25
1.65+ 2.25

= 0.577

From this, Expectation = payout x probability = 1.65 x 0.577 = 95.2%, typical of commercial sports betting agencies that 
plan to take their 5% share of all bets placed.

Various sports gambling simulations (See Figure 5) can tease out this relationship between payouts, probabilities 
and expectation – involving just two outcomes (win or lose), three outcomes (win lose or draw) or more outcomes (a 
horse race). Using real payout data, the sum of the reciprocals of the payouts will inevitably be more than 1 – and the 
reciprocal of this sum will be the expectation, consequently less than 100%. Repeated simulations will produce eventual 
overall losses.

SAMPLING WITHOUT REPLACEMENT – QUINELLA SIMULATION
The ‘quinella’ situation can be introduced through choosing a pair from cards numbered 1 to 8. The ‘Stawell Gift” 
simulation then asks students to test for a fair payout on a bet that Runners 7 and 8 will fill the first two places in a race 
with 8 appropriately handicapped runners (8 equal chances). Repeated simulations with different payouts and some 
theoretical analysis will be required before the student is convinced that a fair payout would be $8 x 7/2 = $28.

Figure 4. This student has chosen the correct payout.

A multi-bet simulation pays out only for a win on both of two games. The two individual payouts are multiplied to 
give the multi-bet payout, so with bookies’ margins of 10% the expectation is reduced to 90% x 90% = 81%, an overall 
‘bookies’ margin of 19%. Students can use tree diagrams to analyse this two-step event and link their understanding 
of multiplication of probabilities to reinforce what they already know about the link between expectation, payouts and 
probabilities. They should also conclude that multi-bets are not a good idea.
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Figure 5. Students enter yellow box data, and then simulate the multi-bet on teams A and C.

A combination-bet simulation provides the added complication of money back if the second of the two events does not 
result in a win. Students need careful tree-diagram analysis to explain the underlying probabilities.

Figure 6. A combination bet with fair payouts.

CONCLUSION
These spreadsheets, together with associated hands-on activities, worksheets, and teacher’s notes, have been trialled 
over the last three years (Money et al., 2015). Their wider use is encouraged for the following reasons:

•	 Mathematics teachers are uniquely placed to take on the responsibility of tackling Australia’s gambling addiction in 
their classrooms. No extra time is involved in doing so, since the gambling context can be used to cover all aspects 
of Year 9 and 10 probability and statistics.

•	 Year 9/10 students are not allowed to gamble (It is illegal.) but the online gaming they play, with its addictive 
attraction and ‘lucky loot boxes’ is in many ways equivalent. They are at the right age to be confronted with the 
issue. 

•	 A whole-school approach, involving teachers of English and Health, is also recommended – and more easily 
implemented prior to the restricted requirements of VCE studies.
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Conceptual models (also commonly called analogies) provide a scaffold for deep conceptual learning. They allow 
students to access their intuition and transfer learning across topics. The best conceptual models not only promote deep 
understanding but also can be used across several areas of mathematics. A few such models are examined in this paper.

INTRODUCTION
There are three main types of knowledge in mathematics; factual, procedural and conceptual (Willingham, 2009). 
The focus here is on the development of conceptual knowledge or understanding, which is one of the hardest types of 
mathematics to help students develop (Willingham, 2009), and one that many weaker students lack (Boaler, 2018-
2019). One of the chief difficulties in developing new conceptual understandings is that “new concepts must be built on 
something that students already know” (Willingham, 2009, p. 18). While some concepts can be built on students’ pre-
existing understanding of precursor areas of mathematics, at other times we can use their experiences in areas outside of 
mathematics to help further their understanding. 

WHY CONCEPTUAL MODELS?
Conceptual models are very similar to what is often referred to in the literature as analogies. However, I have used the 
term “conceptual models” to highlight their importance in concept development and, perhaps owing to my background 
as a physics teacher, to the common use of the term ‘model’ in science as a way of explaining something unfamiliar 
through seeing the similarities in behaviour with something familiar (e.g., wave model of light). 

Whatever term is used to describe them, the use of conceptual models is widespread in mathematics education 
(Richland, Holyoak, & Stigler, 2004; Sarina & Namukasa, 2010; William, 1997). They can range from the everyday to 
the fantastical to the highly abstract. Some conceptual models refer to areas outside of mathematics and others to the 
similarities with areas of mathematics that are already familiar with students. This linking with the already familiar, 
whether within mathematics or outside it, is crucial to the success of conceptual models. 

Although models can be used in other ways, the focus here is on the use of models to develop deep conceptual 
understanding. It has been found that analogies or models are an excellent way to develop what can be very abstract 
ideas (Richland et al., 2004; William, 1997; Willingham, 2009). Analogies or models are particularly relevant to 
mathematics, which deals at its core with “abstract structure in which underlying relationships remain the same but the 
object slots can be filled in varying ways” (Richland et al., 2004, p. 39). Hence the very act of drawing parallels between 
the model and the mathematics can help students think in mathematical ways. Moreover, a ‘powerful’ conceptual model 
can lead to transfer of learning between topics and see the connections between different areas of mathematics (Richland 
et al., 2004; Willingham, 2009).

CRITERIA FOR A GOOD CONCEPTUAL MODEL

There are a number of different published criteria for a good conceptual model or analogy. However, there are 
commonalities between them. 

1.	 The model must be something that is familiar to the students. In order to make connections with prior learning and 
existing concepts the model must be already present within those existing concepts (William, 1997; Willingham, 
2009).

2.	 The model must be clearly on display. Although it is possible to teach the meaning of equality with a set of balance 
scales, the model becomes much more powerful if there is an actual set of scales (or at least a picture of one) on 
display. The model becomes even more powerful if the equal parts are placed or drawn on either side of the scale 
(Richland et al., 2004; Willingham, 2009). 

Powerful conceptual models
Claire Moriarty, Phoenix P-12 Community College
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3.	 The model must closely match and support the mathematics concepts required. A poor match can result in 
misconceptions developing, or the interference of irrelevant prior learning. For example, using a model for adding 
negative numbers as adding chilli or ice cubes to soup has poor match – Most students will know that chilli and 
ice do not have opposite effects on temperature (Barton, 2018; William, 1997). In addition, the best teaching with 
models makes the match explicit – in what ways does the model match the mathematics, and in what ways does it 
not (Richland et al., 2004; Willingham, 2009)

4.	 The best models can be used across multiple topics (William, 1997; Willingham, 2009). Indeed, in Willingham’s 
(2009) article on the cognitive science of mathematics learning, his first recommendation is to find a model 
(analogy) that can be used across topics: “Using the same analogy across topics makes it much clearer to students 
how those topics relate to one another” (p. 19).

DANGERS OF CONCEPTUAL MODELS

Using conceptual models is not risk-free. A model that is unfamiliar to the students or is too abstract has limited (if 
any) value (William, 1997). If the limits of the model are not explicitly stated, some students may over generalise and 
apply the model in inappropriate situations (Sarina & Namukasa, 2010) or apply similarities to the situation that are not 
mathematically valid. 

SOME EXAMPLES OF CONCEPTUAL MODELS
UNWRAPPING A PASS-THE-PARCEL: AN EXAMPLE OF POOR RANGE

Under some circumstances, a conceptual model with a limited range may be unavoidable and does not necessarily mean 
the model is not useful (William, 1997). Indeed, I would argue that the place of conceptual models as scaffolds means 
that the importance of the model fades with time and familiarity, meaning that consecutive models, each leading to 
increasingly sophisticated mathematics, may be of significant benefit. 

Take the example of solving simple multi-step equations. One model used here is that of a pass-the-parcel. Preparing a 
game of pass-the-parcel starts with a single present in the middle and wrapping it in layers from the inside to the outside. 
Playing the game then means unwrapping the layers from the outside to the inside. The analogy lies in “building” and 
“unbuilding” an equation (and already we are mixing our metaphors!). When “building” an equation we start from the 
unknown and “wrap” it in operations from the inside first, but in “unbuilding” we must “unwrap” the outside layers first.

Advantages

If sufficient prior work is done to develop skills in inverse operations and writing expressions in “good” algebra, this 
model offers students a concrete representation of what can otherwise be a very abstract procedure.

Limitations

This conceptual model is packed with flaws. It is not helpful unless we have already addressed how to undo a specific 
operation, and unless substantial work has already been done in “building” equations and correctly expressing them 
algebraically. It applies only to equations where the unknown appears once (although I have found it surprisingly useful 
for helping students to identify why equations with the unknown in two places must be treated differently – We no longer 
have a single present). In addition, students often require extra support to identify which is the outside operation; I often 
resort to yet another analogy of “in the same room”, “across the corridor”, “downstairs”, and “across the street”. As such, 
I would not classify this as a particularly powerful conceptual model, particularly with such a limited range. However, it 
is still useful in helping students in those challenging early steps of solving multi-step equations.

THE SUBMALLOON: A BETTER EXAMPLE

An area with an abundance of available conceptual models is directed number (Barton, 2018). Common models include 
the height of land above and below sea level, games of gain and loss, temperatures above and below zero (William, 
1997). As is commonly pointed out, all of these analogies are limited in terms of their range. Most are useful for 
developing a sense of the scale of negative numbers and their place on a number line. Some can also be useful for adding 
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or subtracting positive numbers to get a negative result (e.g., debts), adding directed numbers (e.g., games where points 
are won or lost) or even finding the magnitude of the difference between two numbers (e.g., What is the difference in 
temperature between Falls Creek at -5°C and Melbourne at 8°C?). 

The submalloon model (Figure 1) can extend to adding and subtracting positive and negative numbers. The model can 
resolve a thorny issue in simplifying algebraic expressions, but even this does not address multiplying and dividing 
directed numbers. The submalloon model is my own adaptation of two separate resources. The name “submalloon” is 
taken from the “10ticks” resource (Fischer Educational, 2004); however, the usage of it here is significantly different. 
The “balloons and weights” concept is adapted from “The Integer Angel” worksheet (Watts, 2016). The submalloon 
model is a magical vehicle that can travel both in the air and under the water. It is accompanied by a vertical number line 
that is drawn on the board and that students copy or paste into their workbooks. The submalloon has both balloons and 
weights attached. The balloons symbolise positive numbers and the weights symbolise negative numbers.

Figure 1. An introductory visual for the submalloon model.

Consider the expression –3 + (–2).

The first number represents our starting point: 3 meters below sea level. The operation is addition, so we are going to 
add something. The second number represents what we are going to add: 2 weights. The crucial concept is “If we are 
adding weights, which way will we go – up or down?” The journey of the submalloon is then drawn on the number line 
as shown below.

Figure 2. The journey of the submalloon for the expression –3 + (–2).
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Consider next the expression 4 – (–2).

We start 4 metres above sea level, and this time we are subtracting weights, so we will move up. The journey is then 
drawn on the number line as shown below.

Figure 3. The journey of the submalloon for the expression 4 – (–2).

Once students are familiar and comfortable with the model, we can point out that adding balloons and subtracting weight 
has the same effect (adding a positive number and subtracting a negative number) and that subtracting balloons and 
adding weights have the same effect (subtracting a positive number and adding a negative). Hence, we start to work 
towards a rationale for the later practise of replacing the signs.

Advantages

This model provides a strong visual model for adding and subtracting directed numbers and a conceptual strategy for 
reasoning through such problems. It is not the only model to do so. However, it is one of the few that offers a conceptual 
framework for a common shortcut – that adding a negative number is equivalent to subtracting a positive (both cause 
the submalloon to move downwards), and that subtracting a negative number is equivalent to adding a positive (both 
cause the submalloon to move upwards). On the surface, this may seem trivial but is a significant result when it comes to 
simplifying expressions in algebra. 

First, consider the following problem: 

Simplify:   5x + 6y – 3x + 2y

A common point of confusion is what to do with the subtraction. What does it belong to? Students have been told for 
some time that, although it is possible to change the order in an addition, it is not possible to change the order in a 
subtraction. 

Through prior exposure to the submalloon model, students should be reasonably familiar with the idea that adding a 
negative has the same result as subtracting a positive. Therefore, we can adjust this question to:

Simplify: 5x + 6y + (–3x) + 2y

Since all our operations are now additions, we can happily rearrange this to 

5x + (–3x) + 6y + 2y

and simplify by collecting the like terms.

Next, consider the problem:

Find the coefficient of g in the expression 3f + 2k – 4g

As mathematicians, we know the correct answer is –4. However, for many students, this is a conceptual leap. Until 
now, we have expected them to read this as “subtract 4 lots of g”, with the operation being separate from the operand. 
However, having established that subtracting 4 lots of g is equivalent to adding –4 lots of g, and that we really need to 
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think of the expression this way, it starts to make more sense why we expect our answer of –4.

Limitations 

While the submalloon model can be extended to algebra, it does not extend to multiplying and dividing with negative 
numbers, a topic I usually tackle simply by exploring patterns. Another limitation is it can reinforce a common 
misconception in physics that exerting a force will cause a movement for a limited time and then stop. As I teach both 
mathematics and science, I am always explicit with this when introducing the model, saying, “It’s bad science but it’s 
good mathematics”.

THE ARRAY/AREA MODEL: FROM MULTIPLICATION AND DIVISION, THROUGH TO 
FACTORS AND MULTIPLES, AND EXPANSION AND FACTORISATION
One of the most versatile models that I have come across is the array or area model. This is more model than an analogy, 
as we are referring to another area of mathematics rather than an experience outside of mathematics. Here, multiplication 
or division problems are presented as an array of objects. In the early stages of multiplication this is an effective visual 
representation that can reinforce utilise subitising and skip counting, as well as illustrating the inverse relationship 
between multiplication and division. 

Example: 3×5  

 

Figure 4. Array model for 3×5.

The model is also easily extended to calculating the area of a rectangle. This application of the same model reinforces 
both the concept of area as the amount of flat space a shape takes up (or the number of square tiles needed to cover a 
shape) and also the relationship between area and multiplication for a rectangle. 

Figure 5. Area model for 3×5.

Once the concept of area has become very familiar, the model can be extended to mental strategies for multiplication 
or division (Boaler, 2018-2019). This is particularly useful for addressing a persistent issue in mental strategies, the 
oversimplification of a two-digit multiplication problem (Day & Hurrell, 2018). Using the area model, it is easy to 
illustrate why 21 × 34 is not equal to 20 × 30 + 1 × 4.

Figure 6. Area model for 21 × 34.
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Once we have established that the area model is a useful representation of multiplication on division problems, we can 
then use it to explore expanding and factorising in algebra. Consider the simple expansion problem:

Expand x(3 x + 2)

This has traditionally been taught in a procedural manner. We explain that we need to multiply everything inside the 
brackets by what’s outside. But questions arise from students year after year, such as “but the order of operations means 
that I’m supposed to do the brackets first”. However, once students are familiar with the area model for multiplication, 
and breaking up the area to make the multiplication more efficient, this process becomes much more intuitive. 

Figure 7. Area model for expanding  x(3 x + 2).

With some prior work around finding common factors, the model can be used to factorise expressions as well. The 
procedure is simply performed in reverse. When presented with the total area, we split it into the component areas, then 
look for a common factor to tell us a possible side length.

Figure 8. Area model for factorising 3x2 + 8x.
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A natural follow-up is more complex expansions, such as with two brackets:

Figure 9. Area model for expanding (x + 2)(x – 4).

Finally, after some work with expansion patterns, the model can be used for factorising quadratics.

Figure 10. Area model for factorising  x2 – 2x – 8.
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Limitations

The fact that the analogy is simply to another area of mathematics means that there are fewer outside influences that 
can interfere with the accuracy of the analogy. However, it does mean that teachers need to ensure that students are very 
familiar with arrays and area as representations for multiplication before extending the model to more abstract ideas. 
Similarly, students should be familiar with the model at each stage before it is extended further. Finally, in using the 
model for factorising, some students may become confused by the similarity in the representation between expanding 
and factorising. Familiarity with inverse operations and that the same array can represent both multiplication and 
division may help here.

CONCLUSION
Conceptual models can make abstract areas of mathematics relatable and intuitive and can lead to the development 
of deep understanding. As such, any well-chosen conceptual can be beneficial. However, using conceptual models 
that apply across different topic areas can lead to an understanding of the interconnectedness of mathematics and an 
appreciation of the links between topics.
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Given how busy the curriculum can sometimes feel, students in the mathematics classroom could be forgiven for the 
impression that all they do is lurch from one topic to the next without ever having time to appreciate the beauty and 
interconnectedness of the things that they are learning, or to stop and ask themselves what else there might be to find out. 
The purpose of this article is three-fold: 1) to draw attention to the ways that even the simplest of mathematical tools can 
quickly give rise to very deep questions, 2) to highlight how the solution of such problems can often draw upon a variety 
of seemingly disconnected branches of mathematics, and 3) to illustrate how answering one question naturally leads to 
other questions.

FIGURATE NUMBERS
Armed with little more than the basic building blocks of whole numbers and addition, one can very quickly begin to pose 
a variety of sophisticated mathematical questions. Picture the scene. A keen student playing with counters at their desk 
notices that 12 of them can be stacked in three rows of four, or even two rows of six, and asks themselves the natural 
question: Can all numbers be arranged in a similar way? Suddenly the concept of non-rectangular numbers (also known 
as primes) is discovered and the questions just keep on rolling in…Well, this is the dream, anyway.

So-called figurate numbers arise very naturally when arranging counters on a desk. The square numbers are those 
where the number of counters in each row is the same as the number of rows. The trapezoidal numbers are those where 
each new row gets one more counter than the last, and a special case is the triangular numbers where there is a single 
counter in the first row. The hexagonal numbers are those that describe the outlines of ever-increasing hexagons (not to 
be confused with the centred hexagonal numbers where all the gaps are also filled in). And so on. See Figure 1 for some 
examples.

One hopes that the keen student then begins to ask things like: Is there a rule for the square numbers? (Yes, easy, n2.) Is 

there a rule for the triangular numbers? (Yes, not quite so easy, 
1
2
n n+1( ).) Is there a rule for the trapezoidal numbers?  

 
(Not really, but there is a rule for the non-trapezoidal numbers, so maybe that’s just as good?) Is there a rule for the 
hexagonal numbers? (Yes.) Is there a reason all hexagonal numbers are also triangular? (Yes.)

Figure 1. Examples of figurate numbers.

When is a square a triangle?
Chris Wetherell, St Francis Xavier College, Australian Maths Trust, and Australian National 
University
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How about: Is there a good reason why 36 is both square and triangular? Are there any other numbers like this? Figure 2 
shows one way in which 36 counters on a desk can be rearranged to establish that it is in both lists, but for the moment, 
this feels more like good luck than good mathematics. It certainly gives no insight into how we might hope to find other 
examples, or perhaps how to prove that there are no others (apart from the trivial case of the number one).

Figure 2. Thirty-six is square and triangular.

FROM COUNTERS TO EQUATIONS
It is a typical feature of mathematics that the tools required to solve a problem are often much more sophisticated than 
the tools required to pose it. Famous examples include the Four Colour Theorem (i.e., any map can be coloured using at 
most four colours without needing to double up for neighbouring regions) and Fermat’s Last Theorem (i.e., while there 
are certainly many examples of Pythagorean triples, being integers that satisfy a2 + b2 = c2 , no such solutions can be 
found if the indices are increased from 2 to 3 or higher). Both problems eluded mathematicians for centuries and both 
eventual solutions required the development of new branches of mathematics – and not without controversy.

So it is with finding square triangular numbers. The problem arises very naturally from playing with counters on a desk 
or dots on a page, and it is very hard to imagine how its solution could rely on such esoteric concepts as the irrationality 
of  2  and constructing the sequence of best rational approximations to it.

A brute force approach to showing that 36 is not the only example is to extend both lists and see what happens:

	 Square:		 1, 4, 9, 16, 25, 36, 49, 64, …, 1089, 1156, 1225, 1296, 1396, …

	 Triangular:	 1, 3, 6, 10, 15, 21, 28, 36, 45, …, 1128, 1176, 1225, 1275, 1326, …

We notice that 36 is the 6th square number and 8th triangular number and, 1225 is the 35th square number and 49th 
triangular number. This is useful, but we would be listing for a very long time before we stumbled upon the next 
example, namely 41,616. A more systematic approach is needed.

The nth square number is  n2, since it forms an n × n rectangular array of dots. The nth triangular number is  Tn = 1
2 n(n+1) , 

since two such triangles can be rearranged into an n × (n + 1)  array of dots. Analysing why 36 is in both lists we see that

36 = 62 = (2× 3)2 = 22 × 32 = 4× 9 = ( 12 ×8)× 9 = 1
2 ×8× (8+1) = T8

For 1225 we have

1225 = 352 = (5× 7)2 = 52 × 72 = 25× 49 = ( 12 ×50)× 49 = 1
2 × 49× (49+1) = T49

The similarity between the two calculations is striking, but the key difference is also worth highlighting: for 36, the 
larger square factor 9 is one more than twice the smaller square factor 4, whereas for 1225, the larger square factor 49 is 
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one less than twice the smaller square factor 25. In any event, we end up with a pair of consecutive integers in the second 
last step, so the calculation matches the required form for a triangular number, as anticipated.

Summarising the above, the square numbers 62 and 352 are also triangular precisely because

 

6 = 3× 2
35 = 7 ×5

and
and

32 = 2× 22 +1,
72 = 2×52 −1.

Hence, our search for other such examples has reduced to finding positive integers a and b satisfying

a2 = 2b2 +1 or a2 = 2b2 −1.

For then the square number (ab)2  is also triangular since

(ab)2 = a2b2 = a2 × a
2 ±1
2

= 1
2 a

2 (a2 ±1) = T
a2
or T

a2−1
.

Conversely, via the Fundamental Theorem of Arithmetic, that positive integers have a unique representation as a product 
of primes, one can show that finding such solutions a and b is the only way to construct numbers that are simultaneously 
square and triangular, so we can be sure that we won’t miss any examples with this approach. To see this, suppose the  nth 
square equals the mth triangular number, so n2 = 1

2m(m+1),  or equivalently 2n2 = m(m+1).  Note that m and  
m + 1  have no common prime factors; otherwise, such a prime would also be a factor of their difference, which equals 1. 
Hence, for the two prime factorisations of 2n2 and m(m + 1) to match, one of  m or m + 1 must be a perfect square, equal 
to some number a2 say, and the other must be double a perfect square, equal to some number 2b2. Hence a2 = 2b2 ±1 as 
claimed.

Requiring that the solutions a and b take only integer values brings us into the world of Diophantine equations, named 
for third-century mathematician Diophantus of Alexandria who pioneered the study of such things. Without this 
restriction, we can interpret the corresponding equations x2 = 2y2 ±1 as a pair of non-rectangular hyperbolas which 
happen to pass through integer-valued points (1, 0), (1, 1), (3, 2), and (7, 5), corresponding to the redundant solution 0, 
trivial solution 1 and interesting solutions 36 and 1225, respectively; see Figure 3. The question becomes: Are there any 
other points on these graphs for which both coordinates are positive integers? There is a limit to how much we can learn 
from a graphical approach or traditional algebraic methods, so something else is required.

Figure 3. Integer-valued points on hyperbolas.

PELL’S EQUATION AND RATIONAL APPROXIMATIONS

The equations a2 = 2b2 ±1 are an example of the general Pell’s equation, or Pell-Fermat equation,  x2 – ny2 = 1 (AMT, 
NMSS). While equations of this form are named in honour of Englishman John Pell and Frenchman Pierre de Fermat of 
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the seventeenth century, their history goes back almost a thousand years earlier to Indian mathematician Brahmagupta 
who first solved the case n = 2 in the seventh century.

The key observation is this: as we look for larger and larger values of  a and b  then, relative to the size of the other terms, 
the  + 1 or –1 in the equation becomes more and more insignificant. Therefore, a2 ≈ 2b2.  Rearranging and taking square 
roots, we have

a
b
≈ 2.

However, it has been known since at least the time of Pythagoras in the sixth century BCE that 2  is irrational, which 
is to say that it cannot be written exactly as one integer divided by another. On the other hand, the rational numbers are 
dense in the reals, meaning that wherever you look on the real line you will find them in abundance. Hence we can, in 

principle, find fractions 
a
b

 as close to 2  as we like. The only problem now is to decide how best to calculate such 
fractions.

One simple method for finding a rational approximation of any number is to truncate its known decimal expansion, 
such as 2 = 1.414213562...  (how these decimal digits can be calculated in the first place will be discussed in the last 

section). For example, truncating after 3 decimal places we have 2 ≈1.414 = 1414
1000

= 707
500

 and we might, therefore,  
 
hope that a = 707 and b = 500 gives a suitable solution. However, a2 = 707 = 499,849  while  2b2 = 500,000: close, but 
not close enough. Attempting to truncate later in the expansion gives similarly poor results; in some sense, the accuracy 
that we gain by using more decimal places is outweighed by the rate at which the numerator and denominator of the 
corresponding fraction are growing. We do not just need more accurate approximations; we need ones that are as good 
as possible relative to the size of the numerator and denominator involved. This is the only way to ensure that we get the 
smallest possible difference of 1 or –1 in the equation a2 = 2b2 ±1.

CONTINUED FRACTIONS
Enter continued fractions. Just as every real number can be represented by a, possibly infinite, decimal expansion, every 
real number can also be represented by a, possibly infinite, continued fraction. The basic algorithm is this: subtract the 
integer part, find the reciprocal, repeat. For a rational number, this amounts to repeatedly converting improper fractions 
to mixed numerals, as in the following example:

48
13

= 3+ 9
13

= 3+ 1
13
9

= 3+ 1

1+ 4
9

= 3+ 1

1+ 1
9
4

= 3+ 1

1+ 1

2+ 1
4

Using a more compact notation, we write 
48
13

= [3;1,2,4],  reading the entries in bold in the last expression above (The

numerators are always equal to 1 so do not need to be recorded). Since the denominators of the improper fractions 
involved at each stage continually decrease, one can argue that every rational number has a continued fraction 
representation that terminates after a finite number of steps.

More interesting is the case of irrational numbers, which must have an infinite representation. For example,

π = 3+ 1

7 + 1

15+ 1

1+ 1

292+ 1
!

= [3;7,15,1,292,…].
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Truncating this representation after one term gives the familiar approximation [3;7] = 22
7
.  After two terms we have 

[3;7,15] = 333
106

;  after three, we have [3;7,15,1] = 355
113

,  and so on. The claim is that these are the best possible rational  
 
approximations for their ‘size’; that is, each one is closer to π  than any other rational number with the same or smaller 

denominator. Compare this with the crude decimal truncation method: for example, 3.14 = 314
100

= 157
50

 is a worse 

approximation than 22
7

= 3.142...  even though the latter has a much smaller denominator.

THE SOLUTION
It turns out that certain special real numbers have a continued fraction representation that is, eventually, periodic: 
precisely those that are solutions of quadratic equations with integer coefficients. This is certainly the case for 2,which 
is a solution of  x2 – 2 = 0, but curiously, it is more effective to consider the number 1+ 2  first. For convenience, we let   
x = 1+ 2  and then reverse the process of completing the square to find a quadratic equation of which x is a solution:

x = 1+ 2

x −1= 2
(x −1)2 = 2

x2 − 2x +1= 2
x2 − 2x −1= 0.

It happens that the constant in this quadratic equation is  , which is very good news (if this is not the case for a given real 
number, then the situation is rather more complicated, but there are ways around it). Next, we rearrange the equation 
to find an expression for   in terms of itself, substitute that same expression into itself, and continue this process 
indefinitely:

x2 = 2x +1

x = 2+ 1
x
= 2+ 1

2+ 1
x

= 2+ 1

2+ 1

2+ 1
x

=!

= 2+ 1

2+ 1

2+ 1

2+ 1
"

= [2;2,2,2,…] .

Finally, simply subtract 1 to deduce that 2 = x −1= [1;2,2,2,…] . There are certainly some finer details that are being 
glossed over here, such as whether the concept of an infinite continued fraction is even well-defined, but it is possible to 
prove that the method above is mathematically rigorous.

Next, we consider the rational approximations found by truncating this expression after a number of terms. For example,   

[1;2] = 3
2

 and [1;2,2] = 7
5
.  Recognise anything? Yes! If 

a
b
= 3
2
,  then a = 3 and b = 2, which corresponds to the known

square triangular number (ab)2 = 36 . Similarly, for a
b
= 7
5

 we retrieve the known example (ab)2 = 1225. 
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Table 1 summarises how this method can be used to find the first handful of square triangular numbers, highlighted in 
the second last column. The last column indicates which triangular number each example corresponds to, alternating 
between positions a2 and  a2 – 1.

length continued 
fraction

a
b

 ab (ab)2 T
a2  or T

a2−1  

0 [1] 1
1

1 1 T1

1 [1;2] 3
2

6 36 T8

2 [1;2,2] 7
5

35 1225 T49

3 [1;2,2,2] 17
12

204 41,616 T288

4 [1;2,2,2,2] 41
29

1189 1,413,721 T1681

5 [1;2,2,2,2,2] 99
70

6930 48,024,900 T9800

Table 1. Square triangular numbers via truncated continued fractions.

GENERATING THE SEQUENCE MORE EFFICIENTLY
Recalculating truncated continued fractions from scratch each time quickly becomes tiresome, so we employ a shortcut 

to speed up the process. By way of example, suppose we know that [1;2,2,2] =
17
12
,  then we can calculate the next term 

of the sequence, [1;2,2,2,2] , without redoing every part of the calculation:

[1;2,2,2,2] = 1+ 1
[2;2,2,2]

= 1+ 1
1+ [1;2,2,2]

= 1+ 1

1+ 17
12

=!= 41
29

Generalising this approach, suppose the sequence of approximations is 
a1
b1
,
a2
b2
,
a3
b3
,…,

an
bn
,… . Then, given a known term  

an
bn
,  the next in the sequence can be calculated as follows:

an+1
bn+1

= [1;2,2,…,2
n

!"# $# ] = 1+ 1
[2;2,…,2

n
!"# $# ]

= 1+ 1
1+ [1;2,…,2

n−1
!"#]

= 1+ 1

1+
an
bn

=!=
an + 2bn
an + bn

Comparing numerators and denominators, what we now have is a co-dependent pair of sequences {an} and {bn} which 
can be defined recursively as follows:

a1
b1

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= 1

1
⎡

⎣
⎢

⎤

⎦
⎥

an+1
bn+1

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= 1 2

1 1
⎡

⎣
⎢

⎤

⎦
⎥
an
bn

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
for n ≥1
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This pair of sequences can be implemented very easily in a spreadsheet, as seen in Figure 4.

Figure 4. Numerator and denominator sequences via a spreadsheet.

Alternatively, we can write the recursive definitions in matrix form as

a1 = 1
b1 = 1

an+1 = an + 2bn
bn+1 = an + bn

for n ≥1

which it follows that

an
bn

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= 1 2

1 1
⎡

⎣
⎢

⎤

⎦
⎥

n−1
1
1

⎡

⎣
⎢

⎤

⎦
⎥

In fact, it is possible to find all square triangular numbers by calculating the powers of the square matrix above and 
simply reading off the product of the entries in the first column, as seen in Table 2.

n 1 2 3 4 5

1 2
1 1

⎡
⎣⎢

⎤
⎦⎥

n 1 2
1 1

⎡
⎣⎢

⎤
⎦⎥

3 4
2 3

⎡
⎣⎢

⎤
⎦⎥

7 10
5 7

⎡
⎣⎢

⎤
⎦⎥

17 24
12 17

⎡
⎣⎢

⎤
⎦⎥

41 58
29 41

⎡
⎣⎢

⎤
⎦⎥

product 1 6 35 204 1189
product2 1 36 1225 41,616 1,413,721

Table 2. Square triangular numbers via matrices.

Proving that the above sequence or matrix formulations do indeed give infinitely many legitimate solutions to the 
equations a2 = 2b2 ±1,  and hence infinitely many square triangular numbers, is a nice exercise in applying the principle 
of mathematical induction. The base case a1 = b1 = 1 being clear, suppose that we have such a pair of solutions  
(a, b) = (ak, bk), for some k ≥1,  and construct the next pair of terms (A, B) = (ak + 1, bk + 1) in the respective sequences. 
From the recursive definitions we have

A = a + 2b,     B = a + b.
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Then

A2 = (a + 2b)2

= a2 + 4ab+ 4b2

= 2a2 + 4ab+ 2b2 − (a2 − 2b2 )
= 2(a + b)2 − (±1) (by inductive assumption)
= 2B2 ∓1.

That is, (A, B) is also a solution, but with the role of +1 and –1 swapped as expected.

OTHER CONNECTIONS
Having now satisfactorily answered the question of which numbers are simultaneously square and triangular, that’s 
the end of the story, right? No, of course not. We might ask: Is there actually a way to find them by analysing the 
rearrangement of counters in Figure 2? Yes! Surprisingly, though, reformulating the problem in this way gives rise to 
only the positive version of Pell’s equation, a2 = 2b2 +1.  Hence, all square triangular numbers can be retrieved, in a 
quite different way, from every second term of the sequence of best rational approximations to 2.

Can we find numbers that are simultaneously square and pentagonal, say? Yes! But this time we need to analyse the 
continued fraction for 6.

Can we easily approximate other square roots without having to find their continued fraction representation? Yes! For 
example, in the matrix formulation above, simply change the 2 in the top-right corner to any other number N and the 
corresponding fractions will converge to N .  On a scientific calculator type 7=  , then (ans+7)÷(ans+1)= , then 
repeatedly hit equals and watch the numbers converge.

How can we be sure that this process always converges to the correct value? The recursive process above can be 

described as xn+1 = f (xn ),  where f (x) = x + N
x +1

.  The study of chaos and dynamical systems provides two simple steps 

to decide what happens in the long-run to any sequence described by a function f(x)  in this way:  1) if the sequence has a 
limit, it must be a so-called fixed-point, namely a solution of  f(x) = x;  2) if  f '(x) <1  at that solution, then it is a stable 
fixed-point and the sequence will converge to it.

How does the efficiency of this process compare to other algorithms, such as applying Newton’s Method? Well, this is 
where things really start to get interesting.

CONCLUSION
Not everything discussed in this article is a ready-made activity to be slotted seamlessly into the average classroom, 
although the enthusiastic teacher might be inspired to adapt various aspects of the discussion into an appropriate 
teaching point or investigation. More significantly, though, is the philosophy of how to think about mathematics and 
mathematical problem solving: Ask deep questions, think about ways to connect what you already know, never be 
satisfied with an answer. Importantly, never worry too much if the answer is beyond your grasp – There is always more 
to learn! This mindset is applicable in all topics and at all stages of the curriculum, for teachers and students alike.
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Teachers aim to embed school mathematics in relevant and engaging contexts. The Olympic Games provides an ideal 
opportunity for students to experience the use of maths content that they are engaged with in the classroom, to events 
beyond the classroom in sporting and other contexts, as well as making connections across mathematics content 
and other curriculum areas. In this paper, you will see how most aspects of mathematics and the proficiencies can be 
included as part of a unit/program focusing on the Olympics.

WHY USE THE OLYMPIC GAMES IN YOUR PROGRAM?
Embedding school mathematics in relevant and engaging contexts for students is advocated in the Australian Curriculum 
– Mathematics (Australian Curriculum, Assessment and Reporting Authority, n.d.). What could be more relevant and 
engaging for students than an international sporting event of such diversity as the Olympic Games? There will be 
approximately 205 nations participating in the Olympic Games in Japan from 24th July to 9th August. The countries 
range from the world’s largest populations, such as China and India with populations of around 1.5 and 1.3 billion, 
to some of the world’s smallest populations such as St. Helena, a 308 square kilometre island in the Atlantic, with a 
population of 8,000. 

SPORTS AT THE OLYMPIC GAMES

There will be 33 different sports and 339 different events: aquatics, archery, athletics, badminton, basketball, boxing, 
canoeing, cycling – road, cycling – track, equestrian events, equestrian – dressage, fencing, football, golf, gymnastics, 
handball, hockey, judo, karate, pentathlon, rowing, rugby, sailing, shooting, skateboarding, surfing, table tennis, 
taekwondo, tennis, triathlon, volleyball, weightlifting, and wrestling. 

The sport and mathematics connection provides a wonderful opportunity for students to experience the use of the 
mathematics at school to the society. This event is a rich context for the application of mathematics not related to sport, 
for example the exploration of the countries competing in terms of populations, area, team size in relation to population 
etc. Virtually every aspect of mathematics could be included as part of a unit focussing on the Olympic Games, as well as 
the potential to integrate this with all learning areas across the curriculum.

MATHEMATICS AND THE OLYMPIC GAMES

All mathematics domains and topics can be linked to the Olympic Games. Here are some suggestions.

Statistics and Probability

•	 Predict how many countries participating in the Olympics are represented by school families. Survey and graph 
nationalities of students in the school/year level/class.

•	 Students develop questions to collect data on favourite sports/games, sports played by students, and their favourite 
event in the Olympic Games. Explore ways of representing data.

•	 Students predict and justify the number of medals certain countries will win. Keep a medal tally over the duration of 
the Games. Compare at the end and discuss.

•	 Students collect personal data during sport (running, jumping, swimming, goals, shots on goal, etc.) and represent 
graphically comparing these with elite athletes.

•	 Investigate the schedule of events (available on the Tokyo Olympic website).

Measurement and Geometry

•	 Estimating, then measuring lengths (100 m, 200 m, 400 m, 1,500 m, long/high jump, shot put, javelin records), time/

Using the context of the Olympic Games to 
enhance the learning of mathematics
Pam Hammond
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measure themselves, compare with Games’ records

•	 Students estimate the height/length of the Games record jumps

•	 Dimensions and volume of the Games swimming and diving pools

•	 Distance travelled and time taken for athletes to travel to Japan (include time zones)

•	 Shapes of different arenas and the reasons for these shapes, also field event areas

•	 Design of equipment – shapes involved

•	 Designing logos and flags – link to fractions

•	 Location of Tokyo and countries on a world map (include longitude and latitude)

Number and Algebra

•	 Ordinal number can be explored when young students are performing in a sports day or having races with toys 
(There are picture story books to use as stimulus)

•	 Tally medals; combinations of gold, silver, and bronze if there are ‘x’ medals

•	 Order numbers of athletes in each country’s team; compare populations of countries

•	 Explore decimals by comparing results of competitors in an event (timing, height/length/mass); comparing winners 
with past events; comparing with students’ results;

•	 Investigate scoring of different events

•	 Numbers of volunteers/officials needed in the various sports

•	 Explore catering quantities by using local data (e.g., canteen/catering outlet)

•	 Explore waste management by investigating this at school level first

•	 Speed of athletes/swimmers/cyclists – How can this be determined?

•	 Investigate fitness measures (pulse rate, heart rate at rest and when exercising)

•	 Investigate gearing on bikes

Links to the mathematics proficiency strands can be made using this context. There is also the possibility of developing 
integrated units, such as ‘Plan a day at the Olympic Games’ or ‘Plan a trip to Japan to attend the Games’, with students 
being personally involved in the decision making as an individual, or planning as a group. 
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INTRODUCTION 
Officially, mathematics and mathematics literacy (ML) are two separate learning areas in South Africa. Learners from 
Grade 10 onwards take one or the other, but not both. This means that there is the potential that by the time learners reach 
Grade 11, they would have acquired different kinds of knowledge and problem solving skills depending on which of 
these they take. This paper, therefore, attempts to explore teachers’ comments on mathematics and ML learners’ solution 
strategies. Teachers’ data is analysed in relation to learners’ data analysis because learners’ responses reflect how they 
have been taught (Machaba, 2018). How teachers teach mathematics and ML is also a reflection of how they perceive the 
two learning areas and how they have been inducted into mathematics and ML, and who inducted them.

MATHEMATICS AND MATHEMATICAL LITERACY
In the South African context, mathematics has been defined within the Curriculum and Assessment Policy Statement 
of the Further Education and Training phase as “mathematical problem solving that enables us to understand the world 
(physical, social, and economic) around us, and most of all, to teach us to think creatively” (Department of Basic 
Education [DBE], 2011, p. 8). 

The fact that mathematics is “about problems in the physical, social and economic world” (DBE, 2011, p. 8) suggests 
that it appeals to the everyday context and to the context of mathematics itself. It can also be viewed as a practice that 
constitutes skills or practices such as “problem solving, observing patterns and generalizing to understand physical, 
social and economic world” (DBE, 2011, p. 8). It is apparent that, in this definition, mathematics is a hybrid subject 
(Parker, 2006), an integration of everyday and school-based mathematical knowledge, but skewed towards school 
mathematical knowledge. The everyday context in this instance could be interpreted as a vehicle to understand school 
mathematics.

TASK 4 ANALYSIS

In the main study, four tasks were administered to both mathematics and ML learners. Four mathematics teachers and 
four ML teachers were chosen for interviews because they are specialists in mathematics and ML. An in-depth interview 
was conducted with each teacher.

Task 4 

Thandi washes her dishes by hand three times daily in two identical basins. She uses one basin for washing the dishes 
and the other for rinsing the dishes. Each basin has a radius of 30 cm and a depth of 40 cm, as shown in Figure 1.

Figure 1. Task 4 question.

Mathematics and mathematical literacy 
teachers’ comments on mathematics and 
mathematical literacy solution strategies:  
An issue of a formula
France Machaba, University of South Africa
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Thandi is considering buying a dishwasher that she will use to wash the dishes daily. Calculate the volume of one 
cylindrical basin in cm3.

FINDINGS AND CONCLUSIONS 
In a test, I was not expecting the concept of volume to be constructed; that surely should have happened earlier in 
the learning phase, in which case a constructivist approach to developing the rule is clearly sensible to facilitate the 
development of conceptual understanding (Machaba, 2016). However, one would expect an understanding of the 
application of the formula because conceptual understanding would have been developed through an investigative way 
(Boaler, 1997) of teaching concepts such as volume. However, most teachers seem to suggest that learners will just 
substitute numbers without understanding the concept of volume. Some of the teachers’ concern seems to be not only 
about the fact that learners are often given formulae in tests, but also about how they teach the concept of volume itself. 
Others seem not support the idea of providing formulae to learners, but with an understanding that the concept should 
have been understood during the teaching process. 

Thus, I argue that during the teaching phase both mathematics and ML, teachers have to teach the concept of volume 
practically so that learners could develop a conceptual understanding rather than just substituting numbers in the 
formula, which lead to procedural knowledge. Though two subjects are preparing students for different future pathways 
– M for the options of engineering and medicine, and ML for a pathway that requires less calculus and complex 
mathematical understanding – all teachers have to emphasise the conceptual understanding of concepts such as volume. 
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Young students are active participants in their learning, particularly when engaged in play contexts, but how do we 
best use play to teach mathematical concepts and ensure deep understanding? This paper will explore a method for 
play-based mathematics learning suitable for young students. A simple planning structure that follows a sequence of 
small group play-based activities and whole class discussions is used to develop intended mathematical concepts and 
proficiencies. 

IMPORTANT CHARACTERISTICS OF YOUNG LEARNERS 
Provision of appropriate learning experiences for young students must take account of their characteristics. Young 
learners commonly learn by observing, examining and interacting with their environment. They are generally resilient 
and are capable of making and acting on choices, expressing their opinions and describing their understanding in a 
variety of verbal and non-verbal ways. 

Young students learn best when they are actively involved in exploring, manipulating and constructing their 
environment in a way that is meaningful to themselves. They use a scientific approach to make inferences, then 
experiment and test their ideas, using their observations to develop broader and deeper understanding of their world.

PLAY AND LEARNING IN MATHEMATICS
A connectionist approach to learning mathematics can be used to structure mathematical learning experiences that begin 
with students engaging in free play with materials or within contexts purposefully selected by the teacher. The teacher’s 
role is to extend this play to focus on the intended learning using challenging questions and problems to draw out student 
ideas and solutions. Focused questioning and explicit teaching of the intended concept and proficiencies follow with the 
goal of promoting problem solving and extending student thinking. Finally, the teacher assists students to make links 
with other materials, contexts and concepts.

LEARNING INTENT

When planning a unit of work, the teacher first needs to consider the concept that is to be the learning focus along with 
the mathematical proficiencies to be developed. Clarity regarding intentions assists the teacher to choose appropriate 
contexts for the learning and provide opportunities for the development of deep understanding of a concept by avoiding 
broad but superficial attention to too many topics. 

Specifically planning for the development of mathematical proficiencies provides a focus for interactions between 
teacher and students. Using this focus, the teacher is able to encourage students to develop dispositions necessary 
for becoming effective users of mathematics. Teachers model focus dispositions and mathematical proficiencies, 
encouraging students to adopt them through their reactions to what students do and say.

VOCABULARY

Young learners are continually expanding their vocabulary and this includes words and phrases with mathematical 
meaning. The planning process, therefore, requires focused attention on the vocabulary to be developed throughout the 
unit. Through discussion with the teacher, students become familiar with mathematical terms and descriptions and begin 
using them within the context of the play and during subsequent learning activities.

CHILD-INITIATED, SPONTANEOUS PLAY

The teacher’s role here is to choose materials or a play context that will provide opportunities to focus students’ attention 
on the chosen learning intentions. Materials that are flexible and engaging will encourage students to play and to interact 
with other students in a way that is meaningful to them. As the students play, the teacher observes and asks questions that 
focus their attention on the intended mathematical concept (e.g., What did you use? How many did you use? What do 
you have most of?).

Developing early maths concepts through 
play
Leah O’Neill, Back-to-Front Maths
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TEACHER-INITIATED, PLANNED PLAY

During subsequent play activities, the teacher further encourages the development of the intended concept by asking 
questions and encouraging students to wonder about something related to it (e.g., Can you make soup with only two 
ingredients? Which ingredient did you have more of? How could you be sure?). Observation of student responses will 
help identify the extent of student understanding and design questions that will extend and challenge them.

CHALLENGE

Challenging problem-solving questions need to be unfamiliar and require students to think about mathematical ideas 
that are not routine or haven’t been taught yet (e.g., I have __ objects in my collection. [Choose a number larger than 
theirs.] Do you have more or fewer than I have? Can you make your collection have the same number as mine? What did 
you do?). For extra challenge, add and/or take away from your collection and note whether the student can adjust theirs 
to take account of the change. 

EXPLAIN AND PRACTISE

During this phase, students share their strategies and listen to other students’ explanations. Focused teaching occurs 
when the teacher re-explains the strategies that students used, simplifying and clarifying the ideas and modelling the 
intended vocabulary. Students are then encouraged to solve similar problems in order to practise choosing and using 
strategies they have learned. 

CONNECT AND GENERALISE

Opportunities to extend the mathematical thinking are then sought to help students make links with other concepts and 
contexts. More structured materials like ten frames, counters, or cubes can be introduced at this point and questions 
asked that would extend and deepen students’ understanding of the concept (e.g., I have four blue counters on my ten 
frame. I want to have nine. How could I make it into nine using these yellow, green or red counters?). Provide fewer than 
five of each colour if you want to encourage more two partitions.

REFERENCES 
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In-depth and hands-on planning by developing the interconnections throughout the mathematics curriculum, driven by 
inquiry and STEM themes, is fun, engaging, and allows students to work within their ‘zone’ and utilise their strengths to 
support their learning. It is imperative that teachers seek opportunities to plan for and develop these interconnections. 
By utilising themes and allowing for a collaborative and inclusive approach to planning, student engagement improves, 
professional practice develops through the development of skillsets, and teaching certainly becomes increasingly 
differentiated.

INTRODUCTION
Mathematics is fun. Technology can be engaging. Inquiry fosters play. Themes provide links. Combining these elements 
together provides a strong foundation to foster student engagement, allowing students to enjoy the process, not just 
focus on outcomes. Teachers can teach ‘through’ a task, not simply ‘to’ a task. Teachers must have sufficient curriculum 
knowledge to support the facilitation of lessons, particularly the rich conversations driven by students, drawn from 
rich, meaningful, and engaging tasks involving themes and technology. As the Australian Curriculum, Assessment 
and Reporting Authority (n.d.) stipulates, “Technologies are an essential problem-solving toolset in our knowledge-
based society.” These elements of the planning process allow teachers to focus on developing their skill set as well as 
their professional knowledge whilst also providing a ‘localised’ context to the curriculum. Pollari, Salo, and Koski 
(2018) assert that an important element of the Finnish education model is, “the education providers, usually the local 
education authorities and the schools themselves, draw up their own curricula within the framework of the national core 
curriculum, which also allows some local characteristics and emphases in the curricula” (p. 2).

THEMES
Themes are not a new idea in education or a new concept when designing inquiry-driven planning. When utilising 
inquiry to underpin a term of planning, the remainder of the curriculum makes more sense and interconnects. We 
utilise a two-year rotation of inquiry themes, ensuring the availability of the breadth of the inquiry curriculum and the 
opportunity to consistently integrate and reinforce mathematical concepts and proficiencies. Themes provided a level 
of engagement and connectedness that has allowed students to inherently learn at their point of need. More importantly, 
developing these themes within a localised context ensures a unit’s relevance, longevity, and value. Engagement 
certainly goes to another level with the incorporation of technology, which is always utilised to complement learning 
processes, never as the main learning objective.

STEM AND TECHNOLOGY

At Bell Park North Primary School, we have implemented a framework that is utilised across Years 2-6, incorporating 
the Fab Lab philosophy to support learning processes and make connections. Fab Labs are “communities, services, 
places, and – especially – technologies” (Menichinelli et al., 2017, p. 33). Menichinelli et al. (2017) suggest that schools 
are inclusive, with both tangibles, such as technology, and the intangibles, such as human interaction. Hence, we have 
utilised VR headsets, Spheros, 3D printing, and Makey Makey as technologies to complement learning processes and 
provide opportunities to link the entire curriculum. STEM and the use of technology are overarching, binding student 
learning. By utilising different technologies within each theme, students are presented with many examples of how 
technology complements the learning process. As such, we are mitigating several layers of reasons why teachers do not 
differentiate – time, resources, limited preparation, concerns with classroom management, and the lack of knowledge 
to support differentiation (Roberts & Inman, 2015). Differentiation allows students to work through an interconnected 
curriculum.

‘THROUGH’, NOT ‘TO’, AND CREATIVE THINKING

Critical and creative thinking and the relevant curriculum allow teachers to teach ‘through’, not ‘to’ (Vingerhoets, n.d.). 

Inquiry-driven mathematics planning: Using 
themes to link curriculum
Tim Teague and Stan Grazotis, Bell Park North Primary School 
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Teachers need to have the appropriate level of knowledge about the curriculum and assists with developing a skillset 
to engage learners at their point of need. Teaching ‘through’ an activity ensures that differentiation is happening and 
that natural links throughout the curriculum are made, which assists teachers with the ‘Where to?’ question and allows 
students to contextualise the curriculum and units of work. Sullivan (2016) supports this concept, stating that students 
can “process multiple pieces of information, with an expectation that they make connections between those pieces, and 
see concepts in new ways… choose their own strategies, goals, and level of accessing a task”. Letting students take 
control over their learning can be challenging. The concept of ‘through’ provides authentic learning opportunities and 
can improve engagement via productive use of student time, stimulating the brain, and creating fairness and equity 
(Roberts & Inman, 2015). This form of differentiation ensures that missed opportunities are kept to a minimum.

CONCLUSION
Planning is an exciting opportunity to reflect student interests and make connections. The use of themes, technology, and 
conversations enable classrooms to be engaging, exciting, and experimental environments. Critical and creative thinking 
is incorporated into all classrooms. By utilising themes, we can make the curriculum work for us, not the other way 
around.
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