Common interventions: what works, what doesn't and how to increase your impact

Tierney Kennedy

Some interventions that we try as schools are really effective, some less so. This article will give you a comparative overview of a few of the most common ones, as well as some easy steps to take that are very effective. To find out more, a great overview of the most common interventions is http://evidenceforlearning.org.au/the-toolkit/full-toolkit/

A useful webinar on this topic is available at this link.

>>> Normal interventions that schools use: how well do they work?

Most of the interventions below are used regularly by schools to try and help "cater for" lowperforming students. None of them have a very high impact, and most have a fairly high cost. All the original references are at the website above, which also includes summaries of how secure the evidence is and how many studies were involved. The table below quantifies the impact on schooling in terms of months of gain and lists the most important factors to take into consideration.

Intervention	Impact on	Important factors to consider
	one year of	
	schooling	
Streaming	Lose 1 month	Causes a lasting negative impact on low-performing
		students and mixed results for high-performing students.
Reducing class	Gain 3 months	Class size has to be reduced to a level that allows teachers
size		to change pedagogical approaches (under 20 in
		middle/upper primary, under 15 in junior primary). It's also
		really expensive to employ that many teachers.
Teacher assistant	Gain 1 month	Overall there is a slight positive gain. However, in cases
full time in a		where teacher assistants work to support particularly low-
classroom, or		performing or special-needs students the impact can be
working to		negative. This is particularly the case where the TA
support specific		substitutes for, rather than supplements, the teacher. I
students		expect that this is because the teacher tends to stop taking
		ownership for the learning of that student when they have
		an adult with them. This is also really expensive.
Small group	Gain 4 months	Groups need to be smaller than 6 students. Highest gains
tutoring		with groups of 2-3. Best done for short periods (gains
		increase up to 12 weeks, but not after that). Must be done
		in addition to normal maths, not instead of normal maths
		or it has a negative impact. While the reason for this is not
		given, I expect that removing students from the class during
		maths time means that the teacher stops taking ownership
		for the needs of that student. Also, replacing the problem-
		solving that reasoning should be part of normal maths with
		arithmetic as tends to make up most tutoring programs is
		not ideal.

>>> Easy steps to take: cost effective and simple to implement

The interventions below are fairly easy to implement as they do not require a change in teaching approach – they are an "added extra" that can be implemented on top of normal teaching.

Intervention	Impact	Important factors to consider
Formative	Gain 8 months	The "feedback" strategy is particularly effective when
assessment and		teachers seek feedback from students on whether they
feedback		really understand, rather than giving feedback to students
		on what to do better. This is also why feedback is linked
		with formative assessment. The research also shows that
		challenging and complex questions are more effective for
		diagnostic tasks and feedback than routine questions. This
		means that teachers should consider using a problem-
		solving task before teaching a strategy.
Peer tutoring	Gain 5 months	Two models work: more capable student helping less
		capable, and both taking turns to tutor each other. Peer
		tutoring is most effective when students work through
		revision questions, rather than new work. This involves
		providing structured questions for the student who is
		taking the tutoring role to review prior to the session.
Metacognition	Gain 8 months	This involves a student taking control of their own learning
and self-		through goal setting, self-monitoring and checking their
regulation		own progress. Students consider what they need to know
		before starting, monitor their progress throughout a lesson
		and reflect by asking, "what would I change if I did this
		again?" This strategy has a high impact with low-achieving
		students, but is more useful with older students than
		younger. Consider "setting the scene" at the start of the
		maths lesson with non-content-oriented goals (e.g. to
		experiment with new ideas, to explain an idea in more than
		one way, to persist with a task for 10 minutes)

>>> Harder steps, but more effective for long-term gains

The steps below have a very significant impact on students, but are also harder to implement as they require a change in pedagogy. As the strategies here are relatively new to mathematics research, most of the articles in this newsletter are devoted to explaining what they mean in simple terms.

Intervention	Impact	Important factors to consider
Conceptual	Gain: more	Treating mathematics like an experiment, where students
change programs	than 12	make a prediction about the answer for a challenging
(See article:	months for	problem then try out their strategy. The teacher and other
<u>Mathsbusters</u>)	each year of	students ask confronting questions to challenge any
See also: peer-	teaching	misconceptions, however the onus is on the student to
reviewed research		change their own mind. The session ends with solving the
article.		challenging problem and then generalising the strategy to a
		more difficult problem. Conceptual change programs also
		make gains for every year that they are implemented,
		rather than being limited to a number of weeks or months.

Problem-based	Gain: 8-12	Students work through mathematical challenges that they
approaches (See	months	have not been taught how to solve. New learning is
article: <u>The</u>		introduced with a problem, students work together to
<u>paradox of</u>		explore it, then explanations follow after the problem is
intervention)		solved (Launch, Explore, Summarise).

>>> Advice for leaders:

Make your decisions about what to try based on your teachers' current thinking and progress. Formative assessment through challenging tasks is easy to implement and leads naturally on to problem-based approaches and conceptual change questioning. Peer tutoring is also fairly easy to implement and is very useful for students to work on when they are not working directly with the teacher.