MAV Annual Conference 2018

Further Maths exams: using the CAS calculator efficiently and effectively

Presenter: Kevin McMenamin | e: kxm@mentonegrammar.net

Core: Data analysis (Examination 1)

The dot plot below displays the difference in travel time between the morning peak and the evening peak travel times for the same journey on 25 days

Question 1 (C): The percentage of days when there was five minutes difference in travel time between the morning peak and the evening peak travel time is (standard percentage calculation)

Question 2 (A): The median difference in travel time is (counting to find the middle value)

The pulse rates of a population of Year 12 students are approximately normally distributed with a mean of 69 beats per minute and a standard deviation of 4 beats per minute.

Question 3 (A): A student selected at random from this population has a standardised pulse rate of z = -2.5 This student's actual pulse rate is (standard calculation using the standardized rule)

Question 4 (E): Another student selected at random from this population has a standardised pulse rate of z = -1. The percentage of students in this population with a pulse rate greater than this student is closest to (using percentage partitions on the standard normal curve)

Question 5 (B): A sample of 200 students was selected at random from this population. The number of these students with a pulse rate of less than 61 beats per minute or greater than 73 beats per minute is closest to (using percentage partitions on the normal curve)

Question 6 (D): Data was collected to investigate the association between the following two variables: *'age (29 and under, 30- 59, 60 and over)'* and *'uses public transport (ves, no)'*

Which one of the following is appropriate to use in the statistical analysis of this association?

(knowledge of content required)

The scatterplot below displays the *resting pulse rate*, in beats per minute, and the *time spent exercising*, in hours per week, of 16 students. A least squares line has been fitted to the data.

Question 7 (B): Using this least squares line to model the association between resting pulse rate and time spent exercising, the residual for the student who spent four hours per week exercising is closest to (observation from the scatterplot)

Question 8 (D): The equation of this least squares line is closest to (choose the coordinates of two points)

list1 list2 list3	Linear Reg	•	A time	^B pulse	С	D	
	y=a+b•x ▼	=				=LinRegB	Π
3	a =68.2625	1	3	65	Title	Linear R	
4	$r_{2} = -1.0875$ $r_{2} = -1$	2	11	56.3	RegEqn	a+b*x	
6	$r^2 = 1$ MSe =	3			а	68.2625	
Cal►		4			b	-1.0875	
	UK	5			r²	1.	

Question 9 (A): The coefficient of determination is 0.8339. The correlation coefficient r is closest to (square root and an observation of the gradient sign

Question 10 (B): In a study of the association between a person's height, in centimetres, and body surface area, in square metres, the following least squares line was obtained.

body surface area = -1.1 + 0.019 x height

Which one of the following is a conclusion that can be made from this least squares line? (direct knowledge content)

Que	estion 1	11 (A) :	Freya	a uses th	e follow	ing data	to gei	nerate	e the sc	atterp	lot belov	v.			
x		1	2	:	3	4	5	6		7	8	9	1	10	
y		105	48	3 3	5 2	3	18	16		12	12	9		9	
The	e scatte	rplot sh	ows t	hat the	lata is no	n-linear	. To l	inear	se the	data,	Freya ap	plies a	a recipr	ocal	
tran Witi	transformation to the variable y. She then fits a least squares line to the transformed data.														
	list3 list4 list5														
	1	1	10	5 9.5E	-3			~~	уу				=	l inRe	aB
	3	3	33	5 0.028	36		1		1.	105.	0.00952			near	R
	4 5	4 5	23	3 0.043 8 0.053	56		2		2.	48.	0.02083.	Regi	Egn a	+b*x	
C	6 al►	6	10	6 0.062	25		3		3.	35.	0.02857.	a	-C	0.0039	Э
					E		4		4.	23.	0.04347.	b	0.	.0117	9
Cal	=	1/list4	1				5		5.	18.	0.05555.	r²	0.	.9835	9
Lir	near Reg						6		6.	16.	0.062	5 r	0.	.9917	6
a la	/=a+D•X		R=3				7		7.	12.	0.08333.	Resi	d {C	0.0016	57
b r		=0.011	7973 7658				< D								
r^2 MS	Se	=0.983 =2.39E	5993 -5												
Qu	estion 1	12 (E):	A log	10(y) tr	ansforma	tion was	used	to line	earise a	set of	non-line	ar biv	ariate d	ata. A	A least
squa	ares line	e was the	en fitte	ed to the	transform	ed data.	The e	quati	on of tl	nis lea	ast squar	es line	is		
			log ₁	0(y) = 1	3.1 - 2.3x	C					c · 1				
Th	s equat	tion is u	ised to	predic	t the valu	e of y w	hen x		The v	alue o	of y is cl	osest t	0		
s	solve (log ₁₀ (y)=3	3.1-2.	3•x x=	1.1,y)			solve(le	og	(v) = 3.1 - 2	2.3• xþ	c=1.1,y		
	(10		ξv	=3 715	, 35229	13			J0	~)		,)	
				()	-0.110	00220	1)					;	v=3.71	53522	29097
Qu	estion 1	13 (D):	The st	atistical	analysis	of a set o	of biva	ariate	data in	volvin	ig variabl	es x ai	nd y res	sulted	in the
info	ormatio	n displa	yed in	the tab	e below	(simple	calcu	latior	of b =	$r\frac{s_y}{s}$)				
Ou	estion 1	14 (C):	A leas	st square	es line is	fitted to	a set	of bi	variate	$\frac{s_x}{data}$	Another	leasts	squares	line	is fitted
with	h respo	nse and	l expl	anatory	variables	reverse	d. Wl	hich o	one of t	he fol	lowing s	tatisti	cs will	not c	hange in
valı (kn	ue? owledge	a hasad	auest	ion)											
Que	estion 1	5 (B): T	The tab	ole below	shows th	e monthl	y prof	ĩt, in c	lollars,	of a ne	ew coffee	shop f	for the f	irst ni	ne months
of	2018.		-			1 .		. 1					~	1	
	Month		lan.	Feb.	Mar.	Apr.	M	ay	June	Ju	ly Au	ıg.	Sept.		
	Profit(\$) 2	890	1978	2402	2456	46	51	3456	28	23 26	78	2345		
Usi	ng four-	-mean s	mooth	ing with	centring,	the smo	othed	profi	t for Ma	y is c	losest to (multip	ole addi	itions])
Que	estion 1	6 (C): 1	The qua	arterly sa	les figure	s for a lar	ge sub	ourbar	garden	centr	e, in milli	ons of	dollars,	for 20)16
and	and 2017 are displayed in the table below.														
	Year		Quart	er 1	Quar	ter 2	Q	Quarte	er 3	Q	uarter 4				
	2016		1.7	3	2.8	37		3.34			1.23				
	2017		1.0	3	2.4	15		2.05			0.78				
Usir	ng these	e sales fi	gures,	the seas	onal_inde	ex for Qua	arter 3	3 is clo	sest to						
$\left\ \frac{1}{1} \right\ $. 73+2.3	<u>3.34</u> 87+3.34	+1.23	1	$\left\ \frac{1}{7} \right\ $	2 <u>1.3+2</u> .45	.05 +2.05	+0.78	.]		1.45	69247	55+1.24 2	62006	<u>808</u>
(=		4) 1 45000	4755 (⁻		4)	ንበበድቦ	8				1.351562682
				1.40692	+199				1.240	20000	0				

Core: Data analysis (Examination 2) Question 1

Traffic congestion can lead to an increase in travel times in cities. The dot plot and boxplot below both show the increase in travel time due to traffic congestion, in minutes per day, for the 23 UK cities.

g. The data value 52 is below the upper fence and is not an outlier. Determine the value of the upper fence.

Question 2c

A least squares line is to be fitted to the data with the aim of predicting evening congestion level from morning congestion level. The equation of this line is

evening congestion level = $8.48 + 0.922 \times morning$ congestion level

Use the equation of the least squares line to predict the evening congestion level when the morning congestion level is 60%.

Simple calculation: $8.49 + 0.922 \times 60 = 63.8$

Question 2d

Determine the residual value when the equation of the least squares line is used to predict the evening congestion level when the morning congestion level is 47%. Round your answer to one decimal place.

actual = 50

actual=50

 $pred = 8.48+0.922\times47$

pred=51.814

resid = 50 - 51.814

resid=-1.814

Question 3b.

A least squares line is used to model the trend in the time series plot for Sydney. The equation is

 $congestion \ level = -2280 + 1.15 \times year$

i. Draw this least squares line on the time series plot on page 8.

Note: choose 2 points far apart and evaluate the predicted value

 $cong = -2280+1.15 \times 2008$

cong=29.2

cong = -2280+1.15×2016

cong=38.4

Plot the two points (2008, 29,2) and (2016, 38.4)

Question 3b

ii. Use the equation of the least squares line to determine the average rate of increase in percentage congestion level for the period 2008 to 2016 in Sydney.

iii. Use the least squares line to predict when the percentage congestion level in Sydney will be 43%.

cong = -2280+1.15×2008	solve(cong=-2280+1.15·year cong=43,year)
cong=29.2	{year=2020}
cong = -2280+1.15×2016	п
cong=38.4	
$\frac{38.4 - 29.2}{2016 - 2008}$	
1.15	

Q	uestion 3d										
	Year	2008	2009	2010	2011	2012	2013	2014	4 2015	2016	
	Melbourne	25	26	26	27	28	28	29	29	33	
U	se the data in T	Table 4 to	determin	e the equ	ation of th	ne least so	uares line	that ca	an be used to	o model th	e trend in the
da	ita for Melbour	rne. The	variable y	ear is the	explanate	ory variab	le.				
W	rite the values	of the in	tercept an	d the slop	be of this	least squa	res line. R	lound b	ooth values t	o four sig	nificant figures.
_	list8	list9	-		ear Keg					5 > *Doc 🗢	
	2 2008	20							year	^e melb	=LinRegB
	3 2010	26		b	=0	76666667			1 2009	25 T	itle Linear P
	4 2011 5 2012	27		Γ^2	=0	. 8998299 . 80969 <u>3</u> 9			2 2008.	23. II	
	6 2013	28		INIS	e =1,	. 184127			3 2010.	20. IX	-1514.7
	8 2014	28							4 2011.	27. b	0.76666
	9 2016	33							5 2012.	28. r ²	0.80969
	Cal►		1						E	11	•
R	ecursion and	Financia	l Modelli	ng (Exan	n 1)						
T	he value of an	annuity ii	nvestment	, in dolla	rs, after <i>n</i>	years, V.	$_{+1}$ can be	modell	ed by the re	currence r	elation shown
h	low	5	V		$\int V$ -	-1 00341	⁺¹ / ± 5 00		5		
0		0	V 0	- +0000	J, v_{n+1} -	-1.0034/	_n + 500				
Q B	etween the sec	.) ond and t	hird years	, the incr	ease in th	e value of	this invest	stment	is closest to		
			Dr	460	00		4	5000.			
Г	n 0	$\frac{a_n}{46000}$ —	Undefined	460	00.100344	500	16	656 A			
	$\frac{1}{2}$	46656. 47315.	656.4 658.63	4000	40000. 1.0054+500 40050.4						
	3 4	47976. 48639.	660.87 663.12	466	46656.4·1.0034+500 47315.03176						
1	5	49304.	665.37	473	47315.03176 1.0034+500 47975.902868						
	$a_{n+1}=1,0034*a_n$	+500		479	47975.902867984-47315.03176						
	a ₀ =46000						660.87110	7984			
Q	uestion 19 (D)									
D	aniel borrows	\$5000, w	hich he in	tends to 1	repay fully	y in a lum	p sum afte	er one	year.		
T	he annual inter 12.6%	est rate a	nd compo	unding p	period for	tive diffe	rent comp	ound	interest loan	s are give	n below:
	Jall I - 12.0%) Jan II - 12.0%	per annu	in, compo	unung w	weekly						
L	oan Ⅲ - 12.9%	ber anni	im. comp	ounding v	weeklv						
Ĺ	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	per annu	um, comp	ounding of	quarterly						
L	oan V - 13.2%	per annu	ım, comp	ounding	quarterly						
W	hen fully repar	id, the loa	an that wi	l cost Da	niel the le	east amou	nt of mon	ey is	<u> </u>		
C	onvEff(52,12	. 6)	000001	eff(12.6,52)		13.4109	308121			
	onvEff(52,12	13.41 .8)	093081	eff(12.8,52)		13.6374	259228			
	13.63742592 convEff(52,12.9)				12.9,52)		13.7508	397831			
C					12.7,4)		13.3177	415128			
		13.75	083978	eff(13.2,4)		13.8678	933921	-		
ſ	onvEff(4,12.	() 10.01	774151								
	EFF(A 10	13.31	774151								
C	onvEff(4,13.2	4) 10.00	700000								
		13.86	0188338								

Question 21 (B)

Which one of the following recurrence relations could be used to model the value of a perpetuity investment, P_{n+1} , after *n* months?

Question 22 (E)

Adam has a home loan with a present value of \$175 260.56

The interest rate for Adam's loan is 3.72% per annum, compounding monthly. His monthly repayment is \$3200. The loan is to be fully repaid after five years.

Adam knows that the loan cannot be exactly repaid with 60 repayments of \$3200.

To solve this problem, Adam will make 59 repayments of \$3200. He will then adjust the value of the final repayment so that the loan is fully repaid with the 60th repayment.

The value of the 60th repayment will be closest to

Compound Interest	Finance Solver	Finance Solver
N 60	I(%): 3.72	N: 1.
1% 3.72	PV: 175260.56	I(%): 3.72
PW 175260.56	Pmt: -3200.	PV: 3557.08920084
FV -368.1161774	FV: -3557.0892008394	Pmt: -3568.116177362
P/Y 12	PpY: 12	FV: 0.
	CpY: 12	PpY: 12
Final payment: $3200 + 368.12$	Edit Future Value, FV	Finance Solver info stored into
=\$3368.12		tvm.n, tvm.i, tvm.pv, tvm.pmt,

Question 23 (A)

Five lines of an amortisation table for a reducing balance loan with monthly repayments are shown below.

Repayment number	Repayment	Interest	Principal reduction	Balance of loan	
25	\$2200.00	\$972.24	\$1227.76	\$230256.78	
26	\$2200.00	\$2200.00 \$967.08		\$229 023.86	
27	\$2200.00	\$961.90	\$1238.10	\$227785.76	
28	\$2200.00	\$1002.26	\$1197.74	\$226588.02	
29	\$2200.00	\$996.99	\$1203.01	\$225385.01	

The interest rate for this loan changed immediately before repayment number 28. This change in interest rate is best described as

solve $\left(\left(\frac{r}{12}\right) \cdot 229023.86 = 961.9, r\right)$	
{r=5.039998889}	
solve $\left(\left(\frac{r}{12}\right) \cdot 227785.76 = 1002.26, r\right)$	
{r=5.280013992}	

Question 24 (E)

Mariska plans to retire from work 10 years from now.

Her retirement goal is to have a balance of \$600 000 in an annuity investment at that time.

The present value of this annuity investment is \$265 298.48, on which she earns interest at the rate of 3.24% per annum, compounding monthly.

To make this investment grow faster, Mariska will add a \$1000 payment at the end of every month.

Two years from now, she expects the interest rate of this investment to fall to 3.20% per annum, compounding monthly. It is expected to remain at this rate until Mariska retires.

When the interest rate drops, she must increase her monthly payment if she is to reach her retirement goal. The value of this new monthly payment will be closest to

Compound I	nterest	Compound	l Interest
N	24	N	96
1%	3.24	1%	3.2
PV	-265298.48	PV	-307794.4996
PMT	-1000	PMT	-1854.054303
FV	307794.4996	FV	600000
P/Y	12	P/Y	12
C/Y	12	C/Y	12

Recursion and Financial Modelling (Exam 2)

Question 4

Julie deposits some money into a savings account that will pay compound interest every month.

The balance of Julie's account, in dollars, after n months, V_n , can be modelled by the recurrence relation shown below.

$$V_0 = 12000$$
, $V_{n+1} = 1.0062V_n$

ii. After how many months will the balance of Julie's account first exceed \$12 300?

$a_{n+1}=1,0062*a_n$	12000	12000.
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	12000. 1.0062	12074.4
$ \begin{array}{r} 2 & 12149. \\ 3 & 12225. \\ 4 & 12300. \\ \end{array} $	12074.4· 1.0062	12149.26128
12300.3791374751 🗈 🖻	12149.26128 1.0062	12224.5866999
Recursive Explicit		
▼ a _{n+1} =1.0062•a _n	12224.586699936 1.0062	12300.3791375
a ₀ =12000		

Question 5

After three years, Julie withdraws \$14 000 from her account to purchase a car for her business.

For tax purposes, she plans to depreciate the value of her car using the reducing balance method.

The value of Julie's car, in dollars, after n years, C_n , can be modelled by the recurrence relation shown below.

$$C_0 = 14000$$
, $C_{n+1} = R \times C_n$

For each of the first three years of reducing balance depreciation, the value of R is 0.85 **b.** For the next five years of reducing balance depreciation, the annual rate of depreciation in the value of the car is changed to 8.6%. What is the value of the car eight years after it was purchased?

4•bn	14000	14000.
$\frac{a_{n}}{14000} \frac{b_{n}}{8597.8}$	14000.· 0.85	11900.
11900 7858.3 10115 7182.5 8597 8 6564 8	11900. 0.85	10115.
11.8 0004.8 0004.3 0000.3 0000.3 0000.3 0000.3 0000000000	10115. 0.85	8597.75
	8597.75·0.914	7858.3435
	7858.3435.0.914	7182.525959
	7182.525959 0.914	6564.82872653
	6564.828726526 0.914	6000.25345604
	6000.2534560448· 0.914	5484.23165882

Question 6

Julie has retired from work and has received a superannuation payment of \$492 800.

She has two options for investing her money.

Option 1

Julie could invest the \$492 800 in a perpetuity. She would then receive \$887.04 each fortnight for the rest of her life. **a.** At what annual percentage rate is interest earned by this perpetuity?

Option 2

Julie could invest the \$492 800 in an annuity, instead of a perpetuity.

The annuity earns interest at the rate of 4.32% per annum, compounding monthly.

The balance of Julie's annuity at the end of the first year of investment would be \$480 242.25

b. i. What monthly payment, in dollars, would Julie receive?

b. ii. How much interest would Julie's annuity earn in the second year of investment?

D. II. How much inte	erest would Ju	the s annulty	earn in the s	econd year o	of investm	ient?		
$\left \left \frac{\mathbf{r}}{26} \right \right $			-	Amortization				
$ solve((\frac{-3}{100}) \cdot 492800) $	N: 12.					PM1 1	3	
	{r=4.	{r=4.68} I(%): 4.32				PM2 2-	4	
		P	V: -492800			1% 4	. 32	
		PV: -492800.				PV -	492800	
		Pmt: 2800.0002021582				PMT 2	800.000202	
	FV: 480242.25					P/Y 1:	2	
		Pp	Y: 12		-	C/Y 1	2	
						BAL	467131.1339	
						INT		
						PRN		
						ΣINT 2	0488.88628	
						ΣPRN		
Matrices: (Examina	ation 1)							
Ouestion 1 (D):	,			Ouestio	n 2:			
Which one of the fol	llowing matri	ces has a det	erminant of	2			ГИЛ	
zero?						_	_ +	
/ 1				The mat	rix produc	$t of \begin{bmatrix} 4 & 2 \end{bmatrix}$	0 × 12	
det 3 6			0.		-	L		
2 4								
II 1037					[4] [40]			
				4 2				
				1	~J [12]			
					[8]			
Question 5 (B):								
Liam cycles, runs, sy	wims and wal	ks for exerci	se several tin	nes a month.				
Each time he cycles,	Liam covers	a distance of	f c kilometres	5.				
Each time he runs. L	jam covers a	distance of r	kilometres.					
Each time he swims	Liam covers	a distance o	f s kilometres					
Each time he walks	Liam covers	a distance of	w kilometre	s				
The number of times	that Liam cy	cled ran sw	am and walk	ed each mor	nth over a	four-month	neriod and the total	
distance that Liam tr	ovelled in each	ched, fail, sw	onthe are sh	own in the t	able belov	v	period, and the total	
distance that Liam ti	aveneu in eau		ionuis, are si			<i>N</i> .		
	N	umber of tin	nes in a mor	nth]			
					Total	distance for	7	
	Cvcle	Run	Swim	Walk	Total	instance for		
	v				a m	onth (km)		
Month 1	5	7	6	8	160			
Month 2	8	6	9	7	172			
Month 3	7	8	7	6	165			
Month 4	8	8	5	5	162			
1								

$\begin{bmatrix} 5 & 7 & 6 & 8 \end{bmatrix}^{-1} \begin{bmatrix} 160 \\ 8 & 6 & 9 & 7 \\ 7 & 8 & 7 & 6 \\ 8 & 9 & 5 & 5 \end{bmatrix}^{-1} \begin{bmatrix} 160 \\ 172 \\ 165 \\ 165 \\ 162 \end{bmatrix}$	8 6 1	solve $\begin{bmatrix} 5 & 7 & 6 & 8 \\ 8 & 6 & 9 & 7 \\ 7 & 8 & 7 & 6 \\ 8 & 8 & 5 & 5 \end{bmatrix}$, $\begin{bmatrix} c \\ r \\ s \\ 165 \\ 162 \end{bmatrix}$, $\{c, r, s, w\}$	
8855 [162]	[9]	\[8 8 5 5] [w] [162] /	
		r=6. and $s=1$. and $w=9$. and $c=8$.	

Question 7 (E):

A study of the antelope population in a wildlife park has shown that antelope regularly move between three locations, east (E), north (N) and west (W).

Let A_n be the state matrix that shows the population of antelope in each location n months after the study began.

The expected population of antelope in each location can be determined by the matrix recurrence rule $A_{n+1} = TA_n - D$

The number of antelope in the west (W) location two months after the study began, as found in the state matrix A_2 , is closest to

solve $\begin{pmatrix} 1616\\2800\\2134 \end{pmatrix} = \begin{bmatrix} 0.4 & 0.2 & 0.2\\0.3 & 0.6 & 0.3\\0.3 & 0.2 & 0.5 \end{bmatrix} \begin{bmatrix} e\\n\\w \end{bmatrix} - \begin{bmatrix} 50\\50\\50 \end{bmatrix}$, {e, n, w})

{e=1630, n=2800, w=2270}

Matrices: (Examination 2)

c. Consider the matrix equation where $a = \cot of$ one pie, $b = \cot of$ one roll and $c = \cot of$ one sandwich. **i.** What is the cost of one sandwich?

```
solve \begin{pmatrix} 35 & 24 & 60 \\ 28 & 32 & 43 \\ 32 & 30 & 56 \end{pmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} 491.55 \\ 428.00 \\ 487.60 \end{bmatrix}, {a, b, c})
{a=4.65, b=4.2, c=3.8}
```

Question 8

A public library organised 500 of its members into five categories according to the number of books each member borrows each month.

These categories are:

J = no books borrowed per month

K = one book borrowed per month

L = two books borrowed per month

M = three books borrowed per month

 $N\;$ = four or more books borrowed per month

The transition matrix, T, below shows how the number of books borrowed per month by the members is expected to change from month to month.

In the long term, which category is expected to have approximately 96 members each month?

1.3	1.4	1.5	 ▶ *[Doc∠	7	_	RAD 🚺	1 .3	3 1.4	1.5	► *	Doc 🗸	7	_	RAD 🚺
0.1	0.2	0.2	0	0	50	[100]		0.1	0.2	0.2	0	0	50	500	
0.5	0.2	0.3	0.1	0		100		0.5	0.2	0.3	0.1	0		0	
0.3	0.3	0.4	0.1	0.2	·	100		0.3	0.3	0.4	0.1	0.2	•	0	
0.1	0.2	0.1	0.6	0.3		100		0.1	0.2	0.1	0.6	0.3		0	
0	0.1	0	0.2	0.5	J	[100]		lο	0.1	0	0.2	0.5	J	[o]	
						48.96	04292424						[48.96	04292441
						96.07	64587529							96.07	64587555
						124.2	45472837							124.2	45472839
						151.0	73105298							151.0	73105295
						79.64	45338695						Ľ	79.64	45338665

Question 2

The Westhorn Council must prepare roads for expected population changes in each of three locations: main town (M), villages (V) and rural areas (R).

The population of each of these locations in 2018 is shown in matrix P_{2018} below.

The expected annual change in population in each location is shown in the table b	below.
---	--------

Location	Main town	Villages	Rural areas						
Annual Change	Increase by 4%	Decrease by 1%	Decrease by 2%						
Write down matrix P_{2019} , which shows the expected population in each location in 2019.									
[1.04×2100] 0.99×1800 0.98×1700	2184 1782 1666								

The state matrix describing the highway maintenance schedule for the *n*th year after 2018 is given by $S_{n+1} = TS_n$ **c.** Complete the state matrix, S_1 , below for the highway maintenance schedule for 2019 (one year after 2018). 0.2 0.2 0.1 0. 700 460.0.1 0.1 0. 0.2 400 390. 0.2 0.1 0.2 0.1 200 360. 0.5 0.7 0.8 0.5 1400 1490. In the long term, what percentage of highway each year is expected to have no maintenance (N)? 0.2]50 431.568431568 0.2 0.1 0. 700 388.411588412 0.2 0.1 0.1 0. 4000.2 0.1 0.2 0.1 347.952047952 200 1532.06793207 0.5 0.7 0.8 0.5 1400 Geometry and Measurement: (Examination 1) Question 1 (B): right angled triangle, finding the hypotenuse: $\sqrt{8^2 + 15^2}$ Question 2 (A): Area of non-right angles triangle (angle and sides involved): $A = \frac{1}{2} (18) (26) \sin (30)$ Question 3 (C): arc length of a great circle (theory) Question 4 (E): Bearings (theory) Question 5 (C): time zones: $\frac{15}{60} \times (30 - 25)$ Question 6 (C): cosine rule/perimeter of a non-right angled triangle: $a^2 = 5.4^2 + 2.8^2 - 2(5.4)(2.8)\cos(75)$ Question 7 (B): area between two sectors: $\frac{1}{2} \times \frac{110}{360} (30^2 - 9^2)$ Question 8 D): surface area of a cone/Pythagoras: $solve(\frac{1}{3}\pi(2.5)^2 h = 36, h) / x^2 = h^2 + 2.5^2$ Geometry and Measurement: (Examination 2) Question 1b: surface area of a cylinder: $2\pi (3.4)^2 + 2\pi (3.4)(20.4)$ (image given) Question 1ci: volume of a sphere (tennis ball): $V = \frac{4}{3}\pi (3.4)^3$ (image given) Question 1cii: volume of a cylinder: $V = \pi (3.4)^2 (20.4)$ Question 2a: time zone Question 2bi: small circle radius: $\cos(11) = \frac{r}{6400}$ (image not given) Question 2bii: small circle/parallel of latitude distance : $\frac{(123-107)}{360} \times 2\pi \times 6282.41$ Question 3a. Pythagoras: $AB^2 = 4.1^2 + (6.4 + 6.4 + 5.5)^2$ (image given) Question 3b. Vertical Pythagoras: $dist^2 = 2.5^2 + (18.8)^2$ (image not given) Question 3ci: sine rule (ambiguous case): $\frac{\sin(A)}{20.7} = \frac{\sin(23.5)}{10.4} | 0 \le A \le 180$ Question 3cii: cosine rule: $20.7^2 = 10.4^2 + x^2 - 2(10.4)(x)\cos(A)$

Graphs and Relations: (Examination 1)
Question 1 (C):
The graph below shows a line intersecting the x-axis at (4, 0) and the y-axis at (0, 2). The gradient of the line is:Linear Reg
y=a+b+x-0.5a = 2
b = -0.5
 $r^{-2} = -1$
MSe =-0.5

Question 3 (D)

The three inequalities below were used to construct the feasible region for a linear programming problem. x < 3

y<6

x+y>6

A point that lies within this feasible region is

7 9				◀ 1.3	1.4 1.5 *	Doc 🗢	RAD	
***6					6.87 [↑] γ			
5-		The second s			x≟ý ≤6			
4								
2								
1								
0	1	2	<u>×</u>					
-1					-1			32
				-0.85	(1	X	<mark>∼≥3</mark> 49

Question 4 (B)

A team of four students competes in a 4×100 m relay race. Each student in the race runs 100 m. The order in which each student runs in the race is shown in the table below.

Order	Name
first	Joanne
second	Elle
third	Sam
fourth	Kristen

The following line-segment graph represents the race for Joanne, Sam and Kristen, where d is the distance, in metres, from the starting point and t is the recorded time, in seconds.

Elle's line segment is missing. The equation representing Elle's line segment is *Equation between two points* (20,100) and (45,200)

Linear Reg		
y=a+b•x ▼		
a =20 b =4 r_ =1		
$ m^2 = 1 MSe = $		

Question 6 (E)

Amy makes and sells quilts.

The fixed cost to produce the quilts is \$800. Each quilt costs an additional \$35 to make.

Amy made and sold a batch of 80 quilts for a profit of \$1200. The selling price of each quilt was;

Familiarity with: profit – revenue - cost

solve(1200=sell×80-(800+80×35), sell)

sell=60

Question 8 (D)

A ride-share company has a fee that includes a fixed cost and a cost that depends on both the time spent travelling, in minutes, and the distance travelled, in kilometres.

The fixed cost of a ride is \$2.55

Judy's ride cost \$16.75 and took eight minutes. The distance travelled was 10 km. Pat's ride cost \$30.35 and took 20 minutes. The distance travelled was 18 km.

Roy's ride took 10 minutes. The distance travelled was 15 km. The cost of Roy's ride was

$\begin{cases} 2.55+d*cd+t*td=F F=16.75 t=8 d=10\\ 2.55+d*cd+t*td=F F=30.35 t=20 d=18 cd, ta\\ cd=1.1, td=0.4 \end{cases}$	l }	solve $\begin{cases} 2.55+d \cdot cd+t \cdot td=ff=16.75 \text{ and } t=8 \text{ and} \\ 2.55+d \cdot cd+t \cdot td=ff=30.35 \text{ and } t=20 \text{ and} \\ cd=1.1 \text{ and } td=0.4 \end{cases}$				
23.05=	F	$2.55+d \cdot 1.1+t \cdot 0.4=f d=15 \text{ and } t=10$	23.05 <i>=f</i>			