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The real numbers and related operations form an interesting 
mathematical structure, however most students and many 
teachers will have worked mainly with the rational real numbers, 
and the occasional irrational real number in measurement and 
function contexts. The real numbers are fundamental to senior 
secondary study of functions, algebra, calculus and probability, 
warranting a closer look at their representations and properties. 

Describing real numbers
There are significant difficulties and limitations associated with the treatment of real 

numbers in the senior secondary mathematics curriculum, and these arise in substantial part 
from the corresponding difficulties with respect to a rigorous treatment of real numbers in 
mathematics itself. From the pure mathematical perspective, there are four main approaches 
to dealing with the real numbers: decimal expansions - finite, infinite recurring and infinite 
non-recurring; equivalence classes of  infinite Cauchy sequences of rational numbers (see  
Estep, 2002, Chapter 11; Lang, 2005, Chapter IX); ordered pairs of infinite subsets of 
rational numbers, called Dedekind cuts (see Enderton, 1977, Chapter 5); nested intervals 
with rational endpoints (see Courant and Robbins, 1941, Chapter II pages 68-69). 

While various aspects of each of these approaches are treated informally in the 
senior secondary mathematics curriculum a more comprehensive treatment typically 
takes place some time early in an undergraduate mathematics study of analysis or algebra 
and subsequently in the study of aspects of topology, mathematical logic and set theory. 
The set of real numbers, R, has some very important mathematical properties which 
are not shared with other sets of numbers such as the natural numbers, N, integers, 
Z, and rational numbers, Q - each of these is a proper subset of the set of real numbers: 
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N ⊂ Z ⊂ Q ⊂ R.  In school mathematics, R plays the key role of a particular type of 
universal set in a given context, and necessarily includes elements that are not rational - 
the set of irrational numbers Q′. In senior secondary mathematics, the set of real numbers 
is required to develop content related to the study of functions and calculus, and the 
axioms and properties of the real number system are assumed for this work. Students are 
typically told that the set of real numbers, R, is the union of the rational numbers, Q and 
the irrational numbers, Q′, that is R = Q ∪ Q.  This is often represented in texts, along with 
the relationship  N ⊂ Z ⊂ Q ⊂ R  by means of a Venn diagram such as Figure 1, sometimes 
with illustrative elements included:

Figure 1: Venn diagram for the relationship between subsets of real numbers

A tree diagram is sometimes used alternatively, however such diagrams say more about 
the subsets of R than R itself, and have the limitation of not indicating the size of the sets 
involved: N, Z and Q are all countable or denumerable sets while Q′, and R are uncountable 
sets. That is, Q′ and R are sets with larger infinite magnitude than N, Z and Q since there is 
no one-to-one correspondence between N, Z or Q and Q′ or R. Students generally do not 
have a good appreciation of the greater size of the set of irrational real numbers compared 
with the set of rational real numbers, indeed some think that there are only a ‘few’ irrational 
numbers in existence - and typically quote √2 and π as principal examples. That the real 
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numbers are an uncountable set, can be shown using proof by contradiction based on what 
is called a diagonal argument (see Crossley, 2007 pp 54 - 65). A notion of the distinction 
between rational and algebraic irrational numbers (that is, those which can be expressed as 
roots of polynomials with rational coefficients, such as √2) and transcendental irrational 
numbers (that is, those which need to be expressed in terms of convergent infinite series, 
such as e and π) with respect to the entirety of the set of real numbers, can be accessed 
through the infinite decimal representation of real numbers. An alternative classification of 
real numbers using a tree diagram is shown in Figure 2:

Figure 2: tree diagram for the relationship between subsets of real numbers

The approach to real numbers which underpins the conceptualisation of many Year 
7 – 10 students is as a set of numbers within which one can measure continuous data, and 
carry out related computations in certain measurement contexts involving length, area and 
volume.  For senior secondary mathematics students the approach is likely to be an informal 
combination of:

•	 decimal expansions and polynomial approximations to the limiting value of 
certain infinite series;

•	 the real number-line representation (and graphs of functions of a single real 
variable on the cartesian axis system R × R or R2);
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•	 exact value computation associated with some elements of R such as certain surds, 
fractions and multiples of π, logarithms and exponentials that arise in function 
work; and

•	 a set of numbers which are substituted into various function and relation 
expressions (formulas, equations, inequalities) and manipulating accordingly.  

Irrational numbers in measurement contexts
Students in Years 7 – 10 are typically introduced to some irrational numbers in the 

contexts of measurement of certain lengths, areas and volumes associated with triangles, 
squares, rectangles and circles and three dimensional objects formed from these shapes. 
These numbers are introduced to provide answers to practical questions such as: given basic 
linear measurements associated with certain two dimensional shapes, such as the length and 
width of a rectangle, or the diameter of a circle, how does one calculate the corresponding 
perimeter and area of the shape; or the length of a diagonal or  volume of a related three 
dimensional object? The inverse problem is: given the volume of a cube or  sphere, or area of 
a square or circle, how does one calculate its side length and diameter or radius respectively? 
In such contexts, number is being used to denote a measure associated with geometric 
objects.  Such a measure is made with respect to some unit. It is a reasonable question to ask 
whether a common measure exists for any pair of geometric lengths. This includes special 
cases such as: Does the length of the diagonal of a square have a common measure with its 
side? Does the circumference of a circle have a common measure with its diameter?

An affirmative answer to these questions would tell us that one only needs rational 
numbers for such measurement problems, since, any such ratio produces, by definition, a 
rational number in positive fraction form.  This is not the case – the ratio of the length of 
the diagonal of any square to its side and the length of the perimeter of any circle to its 
diameter are not rational – thus, students are typically introduced to certain non-rational, 
or irrational numbers, namely π;  and square roots of numbers that are not themselves 
perfect squares of a rational number, such as √2. In the early and middle years of secondary 
schooling, their irrational nature is usually described in terms of their decimal expansion - 
that unlike rational numbers, they have an infinite non-recurring decimal expansion, and 
this is typically provided as de facto knowledge.

The existence of simple arithmetic approaches to evaluating a rational approximation 
for √2 indicates an important distinction between √2 and π as irrational numbers - they 
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are each a different kind of irrational number, √2 is algebraic and π is transcendental. What 
does this distinction mean? A real number is said to be algebraic if it is the root of some 
polynomial equation with integer coefficients, that is, it is the solution to some equation of 
the form: anxn + an-1 xn-1 + an-2 xn-2 +… + a3x3 + a2x2 + a1x + a0  = 0, where the ai are integers 
and n is a natural number. In particular, √2 is a solution to the equation  x2 - 2 = 0, and any 
rational number  is an algebraic real number  since it is the unique solution to a linear 
polynomial equation nx - m = 0. The area of a circle also provides a situation where both 
surds and π are naturally involved, for example, if we wish to form a circle with an area of 
200 square metres, then the radius is found by solving the equation  200 = π × r2, which 
gives  choosing the positive square root since the radius is a length. 

Decimal expansions and the number line
As the decimal expansion of a rational number either terminates, for example,  

or has an infinite recurring pattern, for example, , the 
decimal expansion of an irrational real number must be infinite and non-recurring. One 
can readily write down the decimal expansion of some irrational real numbers using a ‘rule’ 
or ‘process’ by which there will be no infinitely recurring sequence of digits, for example, 
the real number formed when the digits of each natural number are written down from 
left to right, side by side: r = 0.12345678910111213… This number was first described 
in 1933 by David Champernowne and is now known as Champernowne’s number. It was 
shown to be transcendental in 1937. This number can be used straight away to generate 
an infinite countable sequence of other transcendental irrational real numbers of the form 
n + r, where n runs through the natural numbers:  1 + r = 1.12345678910111213 …, 2 
+ r = 2.12345678910111213 … and so on. Indeed, several other well known irrational 
numbers are: 0.122333444455555 …; 0.101001000100001 …; and 0.23571113171923… 
Every real number can be said to be expressed by its infinite decimal expansion if we consider 
the ‘terminating’ decimal expansion for a fraction such as  to be 0.625000 …. (or 
0.624999…). Thus, all real numbers can be classified as having either an infinite recurring 
decimal expansion (the rational real numbers) or an infinite non-recurring decimal 
expansion (the irrational real numbers).

Students will also be familiar with the metaphor of the number line, that is, a geometric 
line with a specific point, O, identified with zero, another specific point identified with 1, 
and other points identified by with the integers, fractions and surds. The term metaphor 
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is used here (see Crossley, 2007) since numbers and geometric points are not the same 
thing. However, a number line can be used to provide a coarse grain visual indication of 
the relative size of the sets of rational and non-rational real numbers, for example if the set 
of points corresponding to a sequence such as  is deleted from the interval [0, 1] the 
corresponding image still looks ‘full’. The relationship in this context between geometric 
constructs such as lines, segments and points and number constructs such as real numbers 
and the set of real numbers is not as obvious as it might at first appear. A more thorough 
consideration of what it means to ‘locate’ certain numbers (or more precisely points which 
are associated with certain numbers) in some sort of constructed sequence from a given 
point of reference on a line shows that the process involves some subtlety.  

Axioms and real numbers
The axiomatic definition of real numbers defines the real numbers as a set  which has 

certain basic properties, specified by axioms. The idea behind this approach is that one 
writes down a minimal set of properties which are necessary and sufficient to capture the 
mathematical structure of the desired number system. Some of these structural properties 
of the real numbers are also common to the rational numbers and the complex numbers, but 
others are not, and these give the real numbers their distinctive, and unique, characterisation. 
The rational numbers, the real numbers and the complex numbers satisfy the field axioms. 
That is, for all numbers x, y and z: x + y and x × y are always defined elements of the set 
(closure);  x + (y + z) = (x + y) + z and  x × (y × z) = (x × y) × z (associative); there exists 
an element 0 such that x + 0 = x = 0 + x and there exists an element 1 such that  x × 1 = 
x = 1  x (identity); there exist numbers  -x and x-1 such that x + -x = 0 = -x + x and  x × 
x-1  = 1 = x-1 × x (inverse); x + y = y + x and x × y = y ×  x (commutative): and  x × (y + 
z) = (x × y)  +  (x × z) (distributive). Both rational and real numbers, but not complex 
numbers, also satisfy the order axioms for a total (linear) order relation ‘<’: either x < y or 
x = y or y < x (trichotomy); x < y and y < z implies x < z (transitive); x < y implies x + z < 
y + z (translation); and if 0 < z then x < y implies x × z < y × z (scaling). Q and R are both 
densely ordered sets, that is, for any two elements of Q there is another element of Q that 
is between the two given elements with respect to the order relation, and similarly for any 
two elements of R there is another element of R that is between the two given elements with 
respect to the order relation. The set of rational numbers Q is also dense in R, that is for each 
real number there are arbitrarily close rational numbers. The fact that the rational numbers 
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are dense in the real numbers means that one can always approximate the location of any 
computable real number on a number line. A set of numbers is said to have an upper bound 
if there is a number k for which all elements of the set are less than or equal to k. The axiom 
that distinguishes R from Q is the completeness axiom: any non-empty subset of R that is 
bounded above in R has a least upper bound in R.

The least upper bound property characterises the real numbers as being complete, and 
does not apply to the rational numbers, for example, any increasing rational sequence of 
numbers that converges to  has  as an upper bound, but this number is not an 
element of Q. It is, however, the irrational real number that is the least upper bound for all 
such sequences. An analogous statement follows for the notion of greatest lower bound for 
every non-empty subset of R that is bounded below. The completeness axiom ensures that 
the set of real numbers is continuous - there are no gaps between the numbers in R. It can also 
be shown that  the real numbers form the unique complete (Archimedean) ordered field 
(see, for example, Cohn, 2002, pp 275 – 279; HREF1).

Computation and some stuff we don’t know 
How are certain transcendental irrational numbers ‘computed’? Essentially by using 

polynomial approximations to infinite series that rapidly converge to the required real 
number in a suitably small number of computations. Related algorithms are built into the 
scientific functionality of calculators and other digital technology. The approach commonly 
used by teachers is based upon an informal treatment of the idea of an infinite power series 
expansion for a function f of a single real variable that converges over a given subset of R. 
Thus, if it is the case that for such a function f:

f(x) = a0 + a1x + a2x2  + a3x3 + a4x4 + … + anxn + … =  over some non-empty 

subset of R, then a polynomial approximation to f(x) is given by:

f(x) ≈ a0 + a1x + a2x2  + a3x3 + a4x4 + … + anxn =  
 

.

Polynomial functions are readily evaluated by repeated application of combinations of 
arithmetic operations. For practical computation purposes the function f is expressed as the 
sum of a finite approximation function and a remainder function, with the latter being used 
to provide a bound on the error associated  with the approximation. For a fuller treatment 
of convergence and error see Chapter 8 of Courant and Robbins (1941); Chapter 6 of Hirst 
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(2006) and Chapters 36 and 37 of Estep (2002). For example, the well known infinite series 
expansions for the exponential function   f(x) = ex =  enables one to 
compute e through evaluation of  f(1) = . While a range of real have 
been established as transcendental, the status of others is currently unknown in this regards. 
It is known that if x and y are transcendental real numbers, then at least one of x + y or 
x × y is also transcendental. However it is not known which of π + e or π × e and π

e , ππ, 
ee, πe are transcendental or not. It is known that the transcendental functions, such as the 
exponential function, output transcendental numbers when the input values are algebraic 
and in the natural domain of the function, with some obvious exception such as e0 = 1 and 
the like. Proofs of transcendence are typically more difficult than proofs of irrationality, and 
both of these, with the small number of exceptions with respect to irrationality, are beyond 
the scope of senior secondary mathematics courses. However, it is important for students 
to be aware that mathematics is not a ‘closed domain’ and there are indeed many questions 
about  real numbers open to further investigation such as  the problem of ‘identifying’ 
computable real numbers from their first few digits (HREF2).
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