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COUNTEREXAMPLES IN 
PROBABILITY AND STATISTICS
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Haileybury College Senior School (Keysborough Campus)

A counterexample is an example or result that is counter to 
intuition or commonly held beliefs. It is used to disprove an 
incorrect statement or conjecture. In this paper some incorrect 
beliefs commonly held by secondary school students in probability 
and statistics are presented. Simple counterexamples that disprove 
these beliefs are provided and discussed in detail.

Introduction
A counterexample is an example or result that is counter to intuition or commonly 

held beliefs. It can be a powerful way of disproving an incorrect statement or conjecture.
In this paper some incorrect beliefs commonly held by secondary school students in 

probability and statistics are presented. Simple counterexamples that disprove these beliefs 
are provided and discussed in detail. Counterexamples that are more technical and apply to 
more advanced areas of probability and statistics can be found in Romano and Siegel (1986).

Misconception 1: A continuous probability distribution does 
not have a mode

By definition, the mode of a continuous probability distribution is the value at which 
its probability density function (pdf ) attains its maximum value (Romano and Siegel 
1986). Counterexamples readily follow from this definition. For example, the mode of a 
normal distribution is its mean. “The mode may not be uniquely defined if the maximum 
density is achieved over an interval, such as the mode of a uniform distribution.” (HREF1). 
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There is no consensus on whether the uniform distribution is weakly unimodal (where any 
element of its support can be taken as a mode (see for example HREF2)) or has no mode (see 
for example Attwood et al 2000), suggesting perhaps the need for a more rigorous definition.

Misconception 2: Every probability distribution has a mean 
and a variance

Counterexample 1
A continuous random variable X has a Cauchy distribution if it has a pdf given by

where  and  are constants. The Cauchy distribution has a central peak 
(the parameter  specifies its centre) and is symmetric (the parameter  specifies its 
width). It can be shown that the median and the mode are both equal to . It can also 
be shown that the mean and variance do not exist. For example, consider the continuous 

random variable X that has a standard Cauchy distribution. Then  and so 

. It is tempting to assign the value of zero to this improper integral 

because the integrand is an odd function:

(this is the Cauchy principle value). However, the integral could also be taken as:

and so there is a contradiction. In fact, for  to exist, both the improper 

integrals  and  need to be finite for all  (Apostol 
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1981 p277) and this is not the case. For example:

Therefore the mean does not exist. It follows that the variance does not exist (since 
variance is defined with respect to the mean).

The fact that the Cauchy distribution has no mean can also be understood by noting 
that the tails of the Cauchy pdf approach the axis very slowly (it is a ‘fat-tailed’ distribution). 
This indicates higher probabilities for extremely large or small values and as a consequence 
the mean does not exist. It is interesting to note that if the standard normal distribution 
is drawn to scale on a sheet of paper so that its ordinate at z = 6 is 1mm high, then the 
corresponding standard Cauchy ordinate would be nearly 1.4 km high.

An implication of the mean not existing is that if a random sample  is 

taken from the Cauchy distribution, then the limit of the average  

as the sample size increases does not exist (see HREF3). Technically this is a corollary of 
the fact that the sum of n independent Cauchy random variables is also a Cauchy random 
variable (Springer 1979).

Applications of the Cauchy distribution include “…. analysis of earthquake fault 
mechanisms, [explaining] the dispersion in the regional orientation of fault ruptures.” 
(Woo 1999, p. 88). Other applications can be found in Krishnamoorthy (2006).

Counterexample 2
A continuous random variable X has a generalised Pareto distribution if it has a 

pdf given by

where  and ,  and  are constants that specify scale, location 

and shape respectively. Note that :
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It can be shown that the mean does not exist for . For example, consider the 
continuous random variable X that has a generalized Pareto distribution with  and 

. Then

and so the mean does not exist.

Counterexample 3
Consider the discrete random variable X that has a probability mass function (pmf ) 

given by   where . Note that this is a pmf since 

 and  

Therefore the mean does not exist.
The above distribution is an example of the Zipf distribution. The Zipf 

distribution is commonly used in linguistics, insurance and the modeling of rare events  
(Krishnamoorthy 2006).

Misconception 3: A probability distribution that has a mean 
will have a (finite) variance

Counterexample
A continuous random variable X has a Pareto distribution if it has a pdf given by
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where  and  are constants. This is a special case of the generalised Pareto 
distribution where  and .

It can be shown that the mean exists for  and that the variance exists for . 
Therefore the distribution has a mean but not a variance when . For example, 
consider the continuous random variable X that has a Pareto distribution with  
and :

.

.

Therefore  is infinite.
An implication of infinite variance is that the random variable associates with high 

variability in its distribution. De Vany and Walls (1999) found the Pareto distribution to be 
an excellent model for the box-office revenue of movies in the USA. For all movies whose 
box-office revenue was greater than or equal to $40 million ( million) they calculated 

 (implying a finite mean and infinite variance). For movies with and without stars 
and million they calculated  and  respectively. The mean of 
box-office revenue can be forecast “since it exists and is finite, but the confidence interval 
of the forecast is without bounds. … The sample variance is unstable and [very much] 
less than the theoretical value … [For] movies without stars [the] variance is 122 million 
times as large as the expectation.” (HREF4, pp. 3, 8, 20). Revenue forecasts therefore have 
zero precision because in each case the size of the variance completely overwhelms the  
value of the forecast.

The Pareto distribution is used primarily in the business and economics fields (it 
was originally used to describe the distribution of wealth among individuals) but also has 
actuarial, scientific and geophysical applications (Krishnamoorthy 2006).

Counterexample 2

Consider the discrete random variable X that has a pmf given by  where 

 (this is an example of the Zipf distribution).  
 
is known as 
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Apéry’s constant (Finch 2003 p. 40).

Therefore  is infinite.

Misconception 4: Increasing the size of a data set will always 
reduce the uncertainty in the estimate of a parameter

Let S be an isotropic source emitting particles in the plane and let D be a line at unit 
distance from S. The angle of emission  is a random variable (see Figure 1). A 
scientist trying to estimate the x-position of S relative to an origin O measures the x-position 
of a certain number of particle impacts on D and considers using their average value as an 
estimate of the x-position of S.

S � 

1 

x 0 D 
Figure 1. An isotropic source S emitting particles in the plane. D is a line at unit distance from 
S. The angle of emission  is a random variable.

But if  is uniformly distributed between 0 and  so that it has a pdf given by

,

then  is a random variable that has a standard Cauchy distribution.
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Proof: Cumulative distribution function of X:
, ,

.

 Probability distribution function of X:

.

Therefore the average  will not approach a limiting value as the 

sample size increases. This means that the size of the sample will make no difference as to 
the uncertainty about the x-position of S.

Misconception 5: Pairwise independence of a set of events im-
plies independence of the events

Counterexample
Two events  and  are independent if and only if . 

More generally, the events , , ….,  are independent if and only if 
.

Consider now the tossing of a coin twice and let the following events be defined:
A = Heads on the first toss, B = Heads on the second toss, C = One head and 
one tail (in either order) is tossed.

Then from the sample space it is clear that:

.
“It follows that any two of the events are pairwise independent. However, since the 

three events cannot all occur simultaneously, we have ….” (Romano and Siegel 1986): 
. Therefore the three events A, B and C 

are not independent.
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Misconception 6: Something true of each subset of a popula-
tion will be true of the population as a whole

Counterexample: Simpson’s Paradox
“Simpson’s paradox refers to the reversal of the direction of a comparison or an 

association when data from several groups are combined to form a single group.” (Moore and 
McCabe 1993, p. 225). It is often encountered in sport, social science and medical science 
data and occurs when a causal relationship based on the association between two variables 
is inferred but the effect of a relevant lurking variable is overlooked. While Simpson’s 
paradox often refers to the analysis of count tables, it can also occur with continuous data. 
For example, separated regression lines fitted through two sets of data may show a positive 
trend, while a single regression line fitted through all the data together may show a negative 
trend (see for example Rücker G. and Schumacher M. (2008), HREF5).

Example
Consider a medical study comparing the success rates of two treatments for kidney 

stones (Charig et al 1986, Julious and Mullee 1994). The overall success rates and numbers 
of treatments for each treatment is shown in table 1. This seems to show that treatment 2 is 
more effective than treatment 1. However, if data about kidney size is included (see Table 
2) the conclusion about the effectiveness of each treatment is reversed. Treatment 1 is seen 
to be more effective for both small and large stones.

Treatment 1 Treatment 2
Successful 273  (78%) 289  (83%)
Unsuccessful 77 61
Total 350 350

Table 1. Overall success rates and numbers of treatments for two treatments for kidney stones.

Small Stones Large Stones

Treatment 1 Treatment 2 Treatment 1 Treatment 2

Successful 81  (93%) 234  (87%) 192  (73%) 55  (69%)

Unsuccessful 6 36 71 25

Total 87 270 263 80

Table 2. Success rates and numbers of treatments for two treatments for kidney stones by 
kidney stone size.
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The lurking variable is the size of the kidney stone. Doctors tended to give the severe 
cases (that is, large kidney stones) the superior treatment (treatment 1) and the milder cases 
(that is, small stones) the inferior treatment (treatment 2). Since the severity of the case can 
influence the success of a treatment, this difference in kidney stone size reduces the success 
rate of treatment 1 despite its superior effectiveness on each size of kidney stone.

Mathematical resolution of the paradox
It is possible to have  and at the same time have

where C represents the lurking variable. People tend to reason intuitively that this is 
impossible because

 is an average of  and 
 is an average of  and .

Although this is true, the reasoning fails because these two averages have different 
weightings:

The reasoning is only correct when B and C are independent and therefore the weightings 
are the same for each average. It would then follow from  
and  that  and there is no paradox.

In the previous example, let the following propositions be defined:
A = The treatment is successful, B = Treatment 1 is used, C = The kidney stone is small.
• ,  and so .

• and . Therefore:  
 .

•  and . Therefore:
 .

•  and . Therefore:
 .

•  and . Therefore:
 .
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There would be no paradox if B and C were independent, that is, if the proportion of 
cases receiving treatment 1 was the same for small stones and large stones. However, for the 
given data the proportion of small stone and large stone cases receiving treatment 1 is  
and  respectively.

Misconception 7: Pr(A | B) = Pr(B | A)

The Prosecutors Fallacy
The Prosecutors Fallacy is a mis-statement of probability as a result of a misunderstanding 

of conditional probability and often occurs in legal arguments. For example (Matthews 
1997), when the prosecution interprets data about DNA and blood group evidence in the 
wrong way. A so-called match probability of 1 in 40 million represents the chances of getting 
so good a match assuming that the defendant is innocent: Pr(match | innocent). However, 
what the jury is trying to decide is the probability of innocence given the DNA information: 
Pr(innocent | match). The jury is misled by the prosecution into thinking that the 1 in 40 
million match probability represents the chances of the defendant being innocent.

Let the following propositions be defined:
A = The defendant is innocent, I = All prior information (defendant had an alibi, 

defendant not identified in line-up etc.), D = DNA evidence matches the defendant.
From Bayes’ Theorem:

It’s given that . Assume that . Then:

.

If for example  so that  then the probability 
of innocence given all the evidence is  and there is clearly reasonable 
doubt. The prosecutor, however, would have the jury believe that the probability of 
innocence is .

Counterexample
If a card is selected from a standard deck of cards, Pr(King | picture card) ≠ Pr(picture 

card | King).
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