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Locating mathematical tasks in meaningful contexts is often claimed to be enriching for students as their mathematical experiences become connected to real life experiences. Such tasks are mathematical applications connecting classroom mathematics to the outside world. Mathematical modelling, on the other hand, connects from the outside world into the classroom and can be used as a means of developing the cognitive connections that are needed to understand mathematics as a discipline.

Introduction
According to Hanna and Barbeau (2008), “those students whose learning is most robust are likely to be those who have developed a multifaceted way of looking at mathematical facts. Their knowledge is rich with many connections and corroborations” (p. 351). Locating mathematical tasks in meaningful contexts is often claimed to be enriching for students as their mathematical experiences become connected to real life experiences (e.g., Zbiek & Connor, 2006, p. 89). Such tasks are mathematical applications connecting classroom mathematics to the outside world. Mathematical modelling, on the other hand, connects from the outside world into the classroom. Muller and Burkhardt (2007, p. 269) claim that “context-based mathematical modeling provides ideal settings to blend content and process so as to produce flexible mathematical competence.” Further, by engaging in the iterative process of modelling and its associated processes “students develop the cognitive connections required to understand mathematics as a discipline” 
(p. 269).

Making Connections through Mathematical Applications

“Using mathematics to solve real world problems…is often called applying mathematics, and a real world problem which has been addressed by means of mathematics is called an application of mathematics” (Niss, Blum, & Galbraith, 2007, p. 10). Teachers’ motivation for using applications is usually to motivate and engage students or demonstration of the utility of mathematics to describe or analyse real-world situations. Although application tasks can require translation of the problem into a suitable representation, formulation of a mathematical model for that representation and the successful use of relevant mathematics in solving the problem and validating the solution, there are important aspects that are not shared with mathematical modelling. “The situation is carefully described, relevant data are provided, and the student knows that each datum must be used in finding the solution. Assumptions needed to define the outcome…are explicitly provided” (Galbraith, 1987, p. 6). This is evident in the Pipes Problem (Figure 1) and the Fertilizer Problem (Figure 2). The Pipes problem is a “real world” application of Pythagoras’ Theorem whilst the Fertilizer Problem is a realistic application of Simpson’s Rule. 
Pipes Problem. An architect has designed a building which has a cavity wall of width 200 mm. What diameter of pipe is required if a bundle of 3 circular service pipes must fit down the cavity. The pipes will all have equal outer diameters (d) and are strapped together as shown in the diagram.
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Figure 1. Pipes Problem.

Fertilizer Problem. Environmental quality control officers from the Department of Primary Industries are trying to estimate the amount of fertilizer residue running off the farmland bordering a 2 km length of creek. Rather than attempt to model the runoff by a formula for 
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, the rate of runoff in kilograms per kilometre at every point
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along the creek, they set up monitoring devices at 
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 km intervals and measure the runoff rate at those points. Use the data collected to calculate an estimate of the total runoff into this 2 km length of the creek. Justify your choice of method.
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Figure 2. Fertilizer Problem.
Applications problems in the secondary school setting can provide a bridge between full modelling tasks and word problems where the mathematics is readily separable from the context which merely acts as a border around the mathematics or the mathematics is wrapped up in a context and needs to be unwrapped so you can proceed (see Goos, Stillman, & Vale, 2007).
Making Connections through Mathematical Modelling

In the modelling approach, advocated here “the modelling process is driven by the desire to obtain a mathematically productive outcome for a problem with genuine real-world motivation” (Galbraith & Stillman, 2006, p. 143). The key characteristic is that “progress is driven by considerations of both the external world and mathematics. The motivation for what to do next is a continuing give-and-take between the two” (Pollak, 1997, p. 101). There is also a difference in what constitutes a solution to the task. It must be mathematically correct and explicable but it also has to be practical giving answers that are reasonable and desirable in the real-world context (Pollak, 1997). The purposes of this approach are to (a) develop student abilities to apply mathematics to problems in their world, (b) take mathematics beyond the classroom and (c) use the real world context as a key component in the modelling process. The mathematical modelling is thus the process involved with solving problems arising in other discipline areas, or in a real world environment. The techniques and meta-knowledge about applying mathematics gained in following this process are just as important as the eventual solution. The process is not bound to the mathematics classroom (it begins and ends in the real world or other subject contexts). A mathematical model is only a part of the whole and in fact several models may be involved in the modelling of a situation.

A Framework for Mathematical Modelling

A modelling process diagram such as the one in Figure 3 describes how a problem is modelled and solved. 


Figure 2: Modelling Process.
Figure 3. Modelling Process.
Such a diagram is in the tradition of those originally designed and refined by modellers (e.g., Penrose, 1978). It is included here for completeness, noting that the diagram, as well as encapsulating the modelling process, can act as a metacognitive scaffolding aid for novice modellers. It is imperative that modellers develop competencies in several areas in order to successfully apply mathematics particularly in settings where there is increasing access to electronic technologies. By ‘competency’ is meant the capacity of an individual to make relevant decisions, and perform appropriate actions in situations where those decisions and actions are necessary to enable success.

Mathematical modelling competency means the ability to identify relevant questions, variables, relations or assumptions in a given real world situation, to translate these into mathematics and to interpret and validate the solution of the resulting mathematical problem in relation to the given situation, as well as the ability to analyse or compare given models by investigating the assumptions being made, checking properties and scope of a given model (Niss, Blum, & Galbraith, 2007, p. 12).

Mathematical modelling competency thus is an umbrella for a number of sub-competencies (Trelibs, Burkhardt, & Low, 1980) which successful modellers develop over time. These include:

(a)
Formulating the specific question to be answered mathematically,

(b)
Specifying assumptions associated with mathematical concepts or the situation being modelled,

(c) 
Identifying important variables or factors,

(d) 
Modelling different aspects of objects or situations,

(e) 
Generating relationships,

(f)
Selecting relationships,

(g)
Making estimates,

(h)
Validating results,

(i)
Interpreting results,

(j)
Evaluating the model.

Student Preferences for Particular Contexts
Julie (2007) points out that preferences of students for topics to investigate mathematically are an under researched area despite claims that real-world tasks motivate student interest in mathematics. When Julie investigated the preferences of students in Years 8, 9 and 10 in low socio-economic areas in South Africa, health issues, items associated with modern consumer goods such as mobile phones, security codes and pins, and financial planning for profit making were of most interest. Of least interest were mathematical investigations of the lottery or gambling, elections, cultural artefacts such as house decorations, and agricultural topics. What students might perceive as “personally relevant to them” is also “transitive and time-dependent” (Julie, p. 201). Thus, Julie also points out that there is value in not always just using contexts that students currently find of interest and personally relevant, rather important issues should be considered “which learners do not as yet perceive as interesting” (p. 201).
In contrast the choices of Australian Year 10 and 11 students from a mix of private and state secondary schools working in mixed school teams at the annual two-day modelling challenge in Queensland, The AB Patterson Gold Coast Modelling Challenge will be examined. Teams were expected to choose a real world situation, pose a problem, make and state any assumptions, clearly identify relevant variables and the basis of any estimates they found necessary, produce a model or models as the case may be, make predictions (as appropriate) and/or draw conclusions in answer to the question posed and evaluate their model(s) specifying any limitations or revisions needed. Of particular interest is the type of topics and the questions that interest secondary school students when they are allowed to choose the modelling situations and pose questions themselves. A selection of topics and the questions posed by the students in the Years 10/11 section of the Challenge when allowed free rein in their choice are shown in Table 1. Even if a degree of restriction in choice is imposed such as specifying that the context must involve population modelling in a restricted habitat, there is still enough freedom for students to pursue their own interests so long as they possess enough mathematical tools within the group to complete the task in the time frame. 

From a modelling perspective there are benefits in choosing social science topics rather than purely scientific topics according to Caron and Bélair (2007). Firstly, most students are familiar with them at the general level (e.g., a drought) if not the specifics, thus circumventing the need for domain specific knowledge which may be challenging in its own right to understand. Secondly, social data (e.g., new cases of a disease) are often readily accessible via the Internet. Thirdly, these contexts almost invite students to critique the models they use. Many of the real contexts chosen by the adolescents in the circumstances described for the modelling challenge are not surprisingly social or ecological contexts. However, it is surprising that few teams (2 in 4 years) have chosen to use a sports context even when this has been suggested by the facilitator.
Table 1a: Modelling Situation Choices and Questions Posed

	Topic 
	Question(s)

	Man-made disasters
	

	
	Aral Sea in Uzbekistan
	When will the Aral Sea dry up completely?

	
	Evacuation of occupied tall buildings due to terrorism
	How long will it take to evacuate the Gold Coast skyscraper, Q1, if a bomb threat is received at 2 am?

	Catastrophic Events
	

	
	Tsunamis
	How can you predict the severity of the damage of a Tsunami from the Richter scale value based on energy?

	Environmental Problems (Natural or built environment)

	
	Drought causing water shortages in cities
	How much water do we really have left in the Hinze Dam? Will it cater for the current and future population of the Gold Coast?

	
	Unrestricted spread of introduced biological control agent (e.g., the cane toad)
	What is the culling rate needed to stabilise the cane toad population in Australia?

	
	Global warming
	How will the carbon emission rates change in the future and how will this affect the world?

	
	Alleviating traffic problems in densely populated areas
	How can you decrease and improve the traffic state on the Gold Coast? Where could you build a subway? How long would it be?


Table 1b: Modelling Situation Choices and Questions Posed
	Topic 
	Question(s)

	Disease (epidemics and pandemics)

	
	SARS
	If another SARS epidemic breaks out in the future, what will be expected deaths and infected cases at the end of a month?

	
	HIV/AIDS
	What do the past and current trends in AIDS diagnosis and deaths suggest for the future number of people afflicted and their odds for surviving?

	Sport
	

	
	Archery
	What is the optimum angle of elevation for the release of an arrow in the sport of archery so that the arrow hits the perfect bullseye? How does air resistance subsequently influence this optimum release angle?

	
	Rehydration
	How much liquid does an athlete need per day to perform at optimal level?

	Population Modelling in Restricted Habitats. 

	
	Banteng cattle (a feral species) on the Cobourg Peninsula in the Northern Territory
	How can we describe mathematically the dynamics of a small population of feral cattle released into virgin land where there are few predators and not limiting resources?

	
	Feral Pigs in Mt Kosciusko National Park
	What culling rate would be needed to ensure the feral pig population died out in the national park? 


Using Student Selected Topics for Teaching Modelling Competencies

Model formulation as the first phase of modelling covers the process from the simplification, structuring and idealising of the real situation (Maa(, 2006) through to translation into a mathematical model. The importance of this crucial phase has been known for sometime but it is still often neglected in teaching (Crouch & Haines, 2004; Kaiser, 2007). One reason given for this is the amount of time that must be invested to conduct a modelling investigation; however, it is not necessary to always focus on developing a complete solution to the problem especially if the pedagogical intention is to be continually developing independent modelling competencies. Alternatively, a starting point, such as the population dynamics of the Banteng Cattle in the Northern territory (see Figure 4), can be given and then this context can be developed to engage students in important teaching issues involved in modelling and applications such as the making of assumptions during problem formulation.

Visit: HREF1, HREF2 and HREF3

Banteng cattle are indigenous to SE Asia, but threatened with extinction there. Shy and elusive staying mainly amongst the trees and grazing at night, a herd in the Northern Territory was unknown to scientists for many years. This is the only pure wild herd remaining in the world. They live in a swamp on the Cobourg Peninsula, where they are restricted by water. This is a feral herd in an Australian National Park presenting the dilemma of their impact on the native environment but the possible need to conserve them as they are an endangered species. The traditional landowners now claim ownership and there are advertisements on the internet for trophy hunting trips. The cattle were imported from Java to Port Essington. Twenty head of banteng cattle were released in 1849 when Victoria Settlement was abandoned. They have not spread out far from where they were released and their numbers have grown only slowly. In late 2005, it was estimated there were just over 5000 head.

Figure 4. Banteng Cattle in Northern Australia.
Example: The Domination of Cane Toads
One team chose to model the problem of an introduced pest species in Australia, the cane toad. Approximately 100 toads, native to Central and South America, were introduced into sugar cane fields at Gordonvale in Queensland in 1935 (altogether about 3000 were released in Australia at this time) in an effort to control the grey back cane beetle. It is not known exactly how many cane toads are in Australia, (estimated to be 100 million in 2005; 200 million see HREF4) and they are spreading across northern Australia and down through New South Wales. According to the Invasive Animals Cooperative Research Centre (2006), cane toads have expanded their range across the north of Australia at a rate of 25-50 km/yr. They occupy more than 500,000 square kilometres of Australia and have reached densities of 2,000 toads per hectare in newly colonised areas of the Northern Territory. However, the average density of toads in areas where they have been established for more than 20 years such as coastal Queensland townships is much lower - about 80/ha. 

By investigating and sourcing similar information on the Internet, the team decided they would begin by investigating the following: If the cane toads were introduced into a contained area how long will it take them to populate that area? Based on this we can then apply this model to Australia and predict when the cane toad will be found all over Australia. Later, as their internet research revealed that, contrary to common belief there was in fact a natural predator in Australia, the frog Litoria dahlii, that eats the young of toads, the team went further and also investigated: How many Litoria dahlii need to be introduced to control the cane toad population (in a contained area being newly invaded by toads) and when does this have to be done to be effective?

Below is part of their solution to the first question including their list of assumptions and their analysis.

Assumptions:

((The contained area (one third of Australia) has the optimum weather conditions for the cane toad.

* The contained area has the optimum habitat and environment for the maximum growth of the cane toad.

((When we transfer our model to a real life situation all the real land has the same factors (i.e., same conditions etc) as the contained land.

* One and every female cane toad lays 30,000 eggs a clutch.

* 50% of a cane toad’s clutch of eggs laid reach maturity.

* Cane toads reach maturity son enough to be able to lay eggs in the same year as they were born.

* 50% of the cane toads are female.

* One and every female cane toad lays two clutches of eggs a year.

* Initially, 3000 cane toads are released into the contained area.

The Model:

For us to be able to find the time period, 
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, it will take for the toad community to grow and develop w will have to find the time it takes for the toad population, 
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, to fill the total capacity, 
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Thus,
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exits the region. In this case, all the ways for a population to enter the region are included in the entering rate. Birth rate, growth rate and migration into the region are examples of terms that would go into the rate at which the population enters the region. Likewise, all the ways for a population to leave an area will be included in the exiting rate. Therefore things like death rate, migration out and predation are examples of terms that would go into the rate at which the population exits the area. But, because this question is without any constraints, there are no predators, no food restraints, no natural deaths and so on, our equation becomes:
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 population of the cane toads, over the year, 
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, is equal to the growth rate, 
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To find out how the 
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 changes over 
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 we have to know the growth rate, 
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, of the cane toads. From the data we gathered, in 1939 toads covered 32,800 square km of area. In 1944, after 5 years, they had multiplied to cover an area of 55, 800 square km. To find the number of toads per square km, we found the total area covered in Australia by the toads, which was 1, 000, 000 sq km. We also found that the estimate population of cane toads in Australia in 2005 is 100 million toads. Therefore, 100,000,000 /1,000,000 = 100 toads per sq km. Now, we can work backwards to find 
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First five years (1939–1944):
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According to this data the cane toads have a growth rate of 12 toads per day. However, if we look at the table [a table of historical data from HREF] we can see the growth rate is not constant. To find a fair growth rate we can find the 
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for every five years and then take the average of our results. [They then proceed to work out growth rates for five 5year periods from 1944 to 1969 for which there are historical data.] From the above calculations we can assume the growth rate 
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, of the cane toads is = (460,000 + 356,000 + 1,288, 000 + 1,280,000 + 1,100,000 + 880,000)/6 = 8 94,000 per year. Our contained area, 
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, was found by finding the third of the size of Australia = 2,564,008 sq km. Because we assumed 100 toads per sq km the number of toads in this area at capacity is 256,400,800.

[They then used: 
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to create a table of values from which they drew a scatter plot and added a trend line with “an r^2 of 1” from which they concluded “This means that a linear model is very appropriate for the two variables.”]

Conclusion:

From the graph it can be seen that the time taken for the cane toads to fill the total capacity, 
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, was approximately 286.8 years. Because we calculated our total capacity from the size of Australia, we can assume that it will take approximately 287 years for the cane toads to spread throughout one-third of Australia. In reality this won’t be the case since the population of the toads will be facing numerous constraints, such as predators, lack of food, natural death, drought and so on. 

From this point, which is typically where initial time constraints curtail the first modelling effort, there is opportunity to examine the model output against some of the published data and to revisit assumptions. Unfortunately, all data the team had sourced had already been used in constructing the model so there was none left for validation. However, it is possible in hindsight to critique the model using other data such as published growth rates and population densities. The assumptions made and the logic of the model construction also need revisiting. After all, it is hardly surprising that a linear regression was a perfect fit to the generated data and the students probably thought they had been diligent looking at the correlation coefficient of their trend line but the basis on which this is a valid testing technique alluded them. It is possible to use “solutions” such as this to develop your students’ abilities to make connections amongst a number of areas of mathematics through discussion and critique. 

This draws attention to another important aspect of the modelling competencies that can be developed. Traditionally in the formulation phase much is made of assumptions that need to be made in setting up the model for solution. However, it is often overlooked that assumptions need to be invoked at all stages of the modelling process. Furthermore, the assumptions are of different types and play different roles. Three types of assumptions were identified (Galbraith & Stillman, 2001), as those associated with (a) model formulation (b) mathematical processing, and (c) strategic choices in the solution process.

Assumptions (a) made during model formulation help define the interface between the type of mathematical model to be developed and the real situation - for example that as a first approximation a population growth rate that is not impacted by predators, or limited by area may be taken as constant over the time period of interest. Type (b) assumptions are mathematically based and apply within solution processes. For example, knowledge of the general properties of linear functions, and specifically of how their output varies with different growth rates, feed into assumptions that determine the way they are employed. Assumptions (c) associated with strategic choices in the solution process are central in determining global choices available to the modeller and strongly influence the direction the solution takes at specific points (e.g., at a temporary impasse). They occur typically during the interpretation and evaluation phases. The emergence of contradictory data might cause a re-assessment of the model used or a different approach using a different formulation. An assumption will be made in determining such choices.

This more analytical view of assumptions can be used to analyse and use the information and data given in a problem statement, or in associated documentation, obtained for example, from the Internet. Are they really assumptions, what types of assumptions are they, (alerting students to the notion that there are several types they can make), are they sufficient for progress, and what roles do they play in the solution process? 

After discussing assumptions, possible errors, verification for the model presented above, you could ask your students to investigate the second part of the investigation where a predator is introduced. 

Conclusion

Locating mathematical tasks in meaningful contexts, an often claimed enriching experience for students because their mathematical experiences become connected to real life experiences, is not as simple as often thought. Mathematical modelling rather than merely using applications of mathematics to real world situations is suggested as a means of connecting from the outside world into the classroom and as a means of developing the cognitive connections that are needed to understand mathematics as a discipline. Using student interest in environmental and social issues and student work are suggested as catalysts for the development of the competencies that are needed to engage in mathematical modelling fruitfully in the secondary school setting to develop such connections.
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