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This paper offers a meta-perspective on the use of mathematics and reality in problem solving. While earlier research focuses on the need to use realistic considerations in solving problems, this paper goes beyond the simplistic legitimisation of analysing situations. Different roles of mathematics are discussed, connecting and relating them to different types of contexts. These two problem aspects, the mathematical models and the situations, will be analysed from a modeling perspective focusing on the issue of ‘authority’, that is, of the source of the choice of a mathematical model in a given situation.
Theoretical Background
During the last twenty five years researchers have been paying more attention to the use of realistic considerations and realistic contexts in problem solving in the mathematics class. However, their goals have kept changing, affecting problem characteristics and curricular decisions. 

Early use of realistic situations was intended to increase motivation by making problems more ‘alive’. Thus, the situation itself was merely some kind of decoration, while the actual problem solving goal was the formulation of some mathematical equation. This hidden curricular goal did not escape children’s eyes, as was exhibited when children were asked to compose word problems of their own. For example, when asked to write a word problem that would be solved by using addition, Nancy, a second grader, wrote: Yesterday I read 20 books in the morning and 30 books in the afternoon. How many books did I read altogether? When she was asked whether this was practically possible, Nancy responded that the question was irrelevant since the purpose of the task was merely to produce an additive expression. Beliefs of children, such as Nancy, were also apparent in a study by Schoenfeld (1987), that showed that children think they should solve a problem in a few minutes and that it should have exactly one solution. 
Still keeping the same goal in mind, i.e. practice in formulation of mathematical expressions, or more generally, the construction of mathematical models, researchers felt some uneasiness with the stereotyped and sterile style of word problems and with its image in children’s minds (for example, Nesher, 1980). Although problems became less sterile, they still remained the means towards achieving the ends, the mathematical concepts.
Realising that school mathematics is disconnected from reality, several kinds of research directions were taken. Some researchers (Verschaffel & De Corte, 1997; Reusser & Stebler, 1997; Greer, 1993) focused on relatively traditional problems that were modified to include a need to use realistic considerations. For example, they asked how much time it would take for a runner, who runs one hundred metres in seventeen seconds, to run a kilometre. Their findings show that, in this example, children do not take into account the realistic fact that a runner would not be able to keep the same pace. Similarly, they showed that in other problems of this type, children and even prospective teachers did not use realistic considerations. Most of the blame was put on classroom norms and researchers realised that the didactical contract (Brousseau, 1997) had to be changed (Verschaffel, Greer, & De Corte, 2002).  
A different direction was taken by researchers who focused on modeling and applications, where modeling is defined as the process of mathematisation or fitting mathematical models and tools to given problems or situations. These researchers introduced problems of a different nature, much less sterile and usually also more realistic or at least more relevant to children (often regarded as authentic problems). Originally the main goal was strengthening the connection between school mathematics and the real world by introducing and working on more applications in the mathematics class. Additional goals included the development of problem solving strategies and critical thinking. It was also argued that working on applications also enhances understanding of the applied mathematical concepts. 
Later, as discussed by Blum and Niss (1991), the argumentation for using modeling tasks had changed from being the means for achieving better concept development and better connections to being the ends. That is, modeling had become a goal in itself, and it was realised that children should be also developing modeling skills. Further works (for a collection of articles on these issues see Lesh & Doerr, 2003) promote modeling tasks of a special nature that are termed model eliciting tasks (MEA) and enable better teacher detection of children’s knowledge through observations of children’s problem solving activity and children’s discussions while working on these problems.
Rationale: Teacher Knowledge and Beliefs
For teachers this change in goals is problematic, although the situation is different in different countries. Since teachers view the learning of mathematical concepts as the main goal of school mathematics, they can accept the use of modeling tasks when shown that these tasks promote the understanding of mathematical concepts. Accepting the introduction of modeling tasks for the sake of developing modeling skills is a different story. Research on teacher beliefs about modeling (e.g. Schorr & Lesh, 2003; Kaiser, 2006) calls for special efforts in teacher education of in-service and pre-service teachers in order to change teacher beliefs.
In order to overcome teacher resistance to the use of modeling tasks we need to understand that teacher difficulty is not simply a matter of changing norms. The task of engaging a whole class in a modeling activity while knowing how and how much to support children’s work in this activity is difficult. It is difficult even for a teacher who is convinced that these tasks serve an important goal. 

As described by Doerr and English (2006), in working on modeling tasks children might build models teachers are not familiar with or models that are different from what the teacher expects. As a result, sometimes teacher interpretation misses the child’s intention, as is evident in the following episode: 
In a modeling activity we observed in a sixth grade class, the children were working on a task involving the planning of organising furniture in a child’s room. The plan was to start by drawing the room on a grid paper using a chosen scale and the given dimensions of the room. In one of the groups the children decided to represent 5 metres by using the length of 5 centimetres. This meant that each metre was represented by 1 centimetre and the whole drawing came out too small. Someone offered to use 10 centimetres for each metre, and the drawing came out too big. A natural next step would have been to check something smaller than 10 centimetres per metre, e.g. 5 centimetres. In the meantime the teacher was engaged with another group that was using the scale 1:20 meaning that each centimetre in the drawing stands for 20 centimetres in reality. Using this kind of scale, if one wants to make the drawing smaller, one needs to increase the number that corresponds to the 1 (i.e., increase the 20 in 1:20). While turning from the second group to the first group the teacher interpreted their discussion on 1 metre for 10 centimetre as if they were talking about a scale of 1:10. As a result, she suggested they should look at a bigger number, quite the opposite of the direction they were contemplating about. 
In trying to answer the call to help teachers develop better disposition towards modeling tasks, this article suggests to help teachers construct better knowledge of the nature of modeling. This knowledge would include better understanding of the role of mathematics in problem solving and better understanding of the decision making process through which the problem solver decides what mathematical models and tools to use. It is our purpose in this paper to suggest a theoretical analysis of modeling that will then constitute the relevant knowledge for teacher education.

 As will be further discussed, some of the analysis involves relatively traditional problems. This will be done for two reasons: 1.One of the main purposes of this analysis is the understanding of the role of mathematics in problem solving, and this would include different types of word problem.  2. While model eliciting activities (MEA) are usually quite detailed and very different in their format from traditional word problems, some modeling problems might be more similar to standard word problems and yet still involve a modeling process. For the purpose of understanding the specific meaning of modeling that will be presented here, it is not necessary to use complex problems. Moreover, the use of less complex problems might make the transition from using traditional problems to using modeling problems easier.
The status of Realistic Solutions
Before analysing the decision making process in modeling tasks and before looking at task characteristics, it is interesting to observe teacher attitude towards this decision process. In the theoretical background we mentioned research findings with regard to children and teacher attitude towards realistic considerations. Here we view this attitude from a different perspective. That is, we discuss the status of alternative answers that [do] use realistic considerations as it is reflected in teacher reactions and teacher problem solutions.

Teacher attitude towards alternative solution is demonstrated in a study by Peled and Hershkovitz (2004). In this study teachers are asked to solve a relatively traditional problem on density. The story problem is about children that, due to some emergency situation, have to be seated more crowdedly on a bus, and the problem solution involves proportional reasoning. As it turns out, teachers who solve this problem using proportional reasoning find it difficult to explain what their own solution means in the specific given conditions. As a result, they cannot come up with valid arguments that might contradict some offered alternative solutions. When asked why they decided to use proportion, most teachers give a tautological answer, namely, that they applied proportion automatically because this is a ratio and proportion problem. Only later, following further class discussion involving more analysis of the situation did they develop better understanding of the reasons and meaning of using proportion in the problem. 
While in the abovementioned school bus problem the difficulty involved avoidance of situation analysis resulting in inability to defend a correct solution and reject an alternatively incorrect solution, other cases that we observed involve inability to accept valid alternative solutions. 
In a study by Koirala (1999), a teacher educator who is worried that academic mathematics is lost, prospective teachers are given a problem involving a 2+1 sale (a modified version of this problem is presented further on). The story problem is about two friends who make a joint purchase in order to utilise the sale. One of them buys two pairs of shoes, the other buys one pair and they only pay for the two more expensive ones. The shoe prices are given (they are not even) and the question is how they should split the total cost (or the savings).

Koirala (ibid) claims that there is only one appropriate mathematical solution to this problem, involving splitting the cost in a way that would give each friend the same percent reduction (or, equivalently, split the cost by keeping the ratio between the original sums each had to pay). To his dismay, most of the prospective teachers suggest very different answers. For example, some suggest splitting the savings evenly, other suggest splitting the savings using a 1:2 ratio corresponding to the numbers of pairs they bought. 
 The view expressed by this paper and made in the following analysis is that Koirala is wrong, and that his opinion towards his prospective teachers’ solutions is unjustified. This view represents and exhibits a general misunderstanding of the role of mathematics. Furthermore, we claim that Koirala should have accepted the alternative solutions not merely on the grounds that one should allow for realistic considerations because in reality friends might not use an accurate percent or ratio calculation. 
Unfortunately, this view of one specific solution as the appropriate mathematical solution is shared by other teachers. While in Koirala’s research the prospective teachers were elementary school teachers, we gave prospective secondary school teachers the following adapted version of the sales problem:

The 2+1 Shoe-sale Problem: When two friends, Orr and Noor, are shopping together they come across a “3 for 2” shoe sale. If they purchase two pairs of shoes at the regular price, a third pair (of lower or equal value) will be free. Orr would like to buy a $56 and a $39 pairs, while Noor is interested in a $45 pair. They decide to buy the shoes together. How should they split the total price so that the price each has to pay would be fair? (adapted from Koirala, 1999).
About 60% of the 22 prospective teachers suggested the solution that keeps the same percent reduction and 20% suggested using the ratio between the numbers of pairs they bought, 1:2, in determining the price reduction. Following further discussion the teachers were told that most of them suggested the same percent strategy, and a few suggested the 1:2 strategy. They were then asked whether they are ready to accept the 1:2 strategy as an alternative solution, and if so, whether one of the two solutions, the same-percent and 1:2, had a better mathematical status than the other.
Out of the 19 teachers, who participated in this part, 9 were ready to accept 1:2 as an alternative solution, 9 were not ready to accept it, and 1 was undecided. Two thirds (6 teachers) of those who were ready to accept the solution 1:2 still thought that the same-percent solution had a better mathematical status than the alternative solution. Looking at their explanations and with more support from class discussion an interesting similarity emerged between the supposedly different answers.

Most of the explanations for accepting 1:2 as an alternative solution were based on the fact that the numbers that are calculated come out very close to the same-percent solution. Those who did not accept 1:2 as an alternative solution, claimed that while using the given shoe prices the results are close, but if the shoe prices were different the price split could be unfair. As an example, one of the students looked at a case where Orr’s pairs cost $20 and $30 and Noor’s shoes cost $50. Although the total value, $50, is the same, the 1:2 ratio would give Orr double the price reduction than Noor. 

As can be seen, the two different answers, accepting and not accepting the alternative solution, seem to emerge from the view that the same-percent solution is the ultimate and the correct solution, and that other solutions might be accepted only when they come close enough to it.

Problem Categorisation: Degrees of Freedom
 In an effort to support our claim that the two alternative solutions should be considered mathematically sound and that none of them should have a higher mathematical status, and with the purpose of changing teacher attitude, we analyse and categorise several different problems. In earlier work (Peled & Bassan-Cincinatus, 2005) we differentiate between three problem categories: Social-moral problems, Scientific problems, and Technical-computational problems. The previously presented shoe-sale problem is an example of a social-moral problem, and the following two problems are examples of a scientific problem and a technical-computational problem.
An example of a scientific problem: 

The Mixture Problem: Ron started painting his garden fence in green that he got by mixing 3 cans of yellow paint with 2 cans of blue paint. When he ran out of paint, he calculated that he needed 40 more cans to finish the fence. He also decided that he would like to mix yellow and blue and get the same shade of green that he had had before. How many of the 40 cans should be yellow and how many should be blue? 
An example of a technical-computational problem:
The Assembly Problem: In a certain car assembly line each car has to be equipped with large cushions for the 2 front seats and smaller ones for the 3 back seats. A load of parts arrived for a certain amount of cars. It included a total of 40 cushions which were indeed used in assembling the cars. How many of them were large cushions? 

The three problem categories differ in the source that determines the mathematical model that can be chosen for problem mathematisation. This source is also responsible for the amount of freedom the problem solver has in choosing the mathematical model.
Specifically, scientific problems are problems that involve a scientific phenomenon. The role of a mathematical model in a problem of this type is to describe the mechanism involved in the relevant process and to predict an outcome of a new experiment. For example, in a mixing colors situation the application of a ratio and proportion model results from observations and consequently from learning about the way colors behave. The model can be tested by checking whether the calculated amounts indeed yield the expected shade of green when they are mixed.
The technical problem is similar in many senses to the scientific phenomenon. In a scientific problem the problem solver has some very restricted choice and freedom in determining the mathematical model that fits the scientific phenomenon (this freedom depends on the phenomenon and on the range of conditions of applicability of the model), while in the case of a technical problem there is no choice and the mathematical model is practically described in the problem (although there might be some limited choice, as in choosing between multiplication and repeated addition). Similarly to the scientific problem, the calculation in the technical problem can be checked (e.g. by counting).

Unlike these two problem categories, where there is some other “authority” that determines the mathematical model, in the social-moral situation there is no such authority. Unless one adds some special assumptions, often as a part of constructing some criterions for choosing the model, there is no reason to be obligated to using one model rather than the other. Moreover, once a model is chosen, there is no meaning to making predictions or testing whether it is the right model (i.e. beyond testing that it fits with the chosen criterions). 
Going back to the Shoe-sale Problem, there is no reason to accept one solution as mathematically superior to the other in terms of the roles mathematics plays in the situation. In a social situation like that, the criterions for making a decision lie solely in the hands of the people involved. Another way to express this is to say that mathematics should not determine what the two friends should do in the situation. Once these friends have decided on some principles or criterions they want to use, their mathematical knowledge can assist them in carrying them out, but in no way should it dictate to them what they should do. 
Following this type of analysis, we are working now with teachers and prospective teachers on understanding the problem solver’s role and the role of mathematical models in problem solving. Our goal is to make teachers aware of the danger of accepting a certain solution automatically, and without realising when a certain decision results from a genuine constraint (such as a discovered scientific behavior), and when they might be flexible in making their own choices. This understanding goes beyond the mathematics class reminding us to be on guard in other aspects of life, and not let others determine what we should do, when there is no apparent reason for giving up being our own bosses. 
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