Let’s take some Maths300 lessons:

- Garden Beds
- Algebra Walk
- Newspaper Shapes
- ...and a few others.

Visualisation

- Looking
- Searching
- Seeing
- Making sense
- Understanding

Learning

Garden Beds

- Surround a flower bed of one square with tiles like this:

```
[  ][ ]
[ ][ ]
```

How many tiles?

- Now build a border around a flower bed of two squares. How many tiles?

Garden Beds

- Now try building borders around flower beds of 3, 4, 5 squares. Each time record the number of tiles you need in a table like this:

<table>
<thead>
<tr>
<th>Size of bed</th>
<th>Number of tiles</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>3</td>
<td>16</td>
</tr>
</tbody>
</table>

- Your challenge is to predict the number of tiles which would be needed for any size flower bed. Eg. What if the garden bed was 100 tiles long?
Expressing generality

Visualising generality
Say what you see.

3 2 \times 3 + 6
4 2 \times 4 + 6
5 2 \times 5 + 6
10 2 \times 10 + 6
N 2 \times N + 6

What is changing?
What is staying the same?
Say what you see.

3 \(2 \times 5 + 2\)
4 \(2 \times 6 + 2\)
5 \(2 \times 7 + 2\)
10 \(2 \times 12 + 2\)
 \(2 \times (\, + 2) + 2\)
 \(2 \times (N + 2) + 2\)

Say what you see.

\(2(n - 2) + 10\) \(2(n - 1) + 8\)
\(2n + 6\) \(3(n + 2) - n\)
\(2(n + 2) + 2\) \(2(n + 3)\)

Say what you see.

\(2(n - 2) + 10\) \(2(n - 1) + 8\)
\(2n + 6\) \(3(n + 2) - n\)
\(2(n + 2) + 2\) \(2(n + 3)\)
Say what you see.

\[2(n - 2) + 10 \quad 2(n - 1) + 8 \]
\[2n + 6 \quad 3(n + 2) - n \]
\[2(n + 2) + 2 \quad 2(n + 3) \]

Algebra Walk

Spot the similarity?

Does everybody move?

Plus 2

Minus 3

Spot the difference?

What is the same? What is different?

Times 2

Times 2, plus 2

What is different?

Plus 2

Times 2, plus 2

What is the same?

Say what you see.

Subtract 3

Subtract from 3

Is there a relationship?
Improving Learning in Mathematics: Challenges and Strategies
Malcolm Swan – 5 Lesson Genres to develop mathematical thinking:

• Classifying mathematical objects
• Interpreting multiple representations
• Evaluating mathematical statements
• Creating problems
• Analysing reasoning and solutions

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Subtract your number from 2</td>
</tr>
<tr>
<td>2.</td>
<td>Multiply your number by 3, then add 1</td>
</tr>
<tr>
<td>3.</td>
<td>Multiply your number by -1, then subtract 2</td>
</tr>
<tr>
<td>4.</td>
<td>Add 2 to your number.</td>
</tr>
<tr>
<td>5.</td>
<td>Subtract 3 from your number.</td>
</tr>
<tr>
<td>6.</td>
<td>Multiply your number by 2, then subtract 3</td>
</tr>
</tbody>
</table>

Say what you see.
Chocolate Cake

2 cakes
3 people

\[\frac{2}{3} \text{ cake} \]

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Table 2</th>
<th>Table 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Questions Which Help Mathematicians Learn More

- How much cake does each person get?
- Is there a pattern?
- Who gets the most? How can it be shown?
- Who gets the least?
- What is the difference between each table?
- How do the shares compare to distributing all 6 cakes evenly amongst 10?
- Is this the fairest way of seating 10 people?
- Are there other ways of cutting the cakes?
- Could the best table have been predicted before the guests started arriving? How?
Newspaper Shapes
Polygons & Polyhedra

Say what you see…

Say what you see…

Say what you see…

What is the same about all these shapes?
What is different about these shapes?

In what ways could you separate these shapes into two groups?

Front View Top View Front View Top View

Make 4 triangles with only 6 rods

Front View Top View
What is the same about all of these?

Which is the odd one out?

Which is the odd one out?
Which is the odd one out?

A

<table>
<thead>
<tr>
<th>x</th>
<th>-3</th>
<th>-2</th>
<th>-1</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>-3</td>
<td>0</td>
<td>3</td>
<td>6</td>
<td>9</td>
<td>12</td>
<td>15</td>
</tr>
</tbody>
</table>

B

<table>
<thead>
<tr>
<th>x</th>
<th>-3</th>
<th>-2</th>
<th>-1</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>-2</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>10</td>
</tr>
</tbody>
</table>

C

<table>
<thead>
<tr>
<th>x</th>
<th>-3</th>
<th>-2</th>
<th>-1</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>-5</td>
<td>-2</td>
<td>1</td>
<td>4</td>
<td>7</td>
<td>10</td>
<td>13</td>
</tr>
</tbody>
</table>

Which is the odd one out?

A

$y = 3x + 7$

$y = -2x - 5$

B

$y - 3x + 5 = 0$

C

$y = 2x$

Which is the odd one out?
Visualisation

- Recapturing the moment
- Slowing down time (and thinking)
- Engaging learners
- Creating opportunities to make connections

Questioning

Learning

Damian Howison, St Mary MacKillop College
dhowison@mackillopsh.vic.edu.au

www.maths300.esa.edu.au

- Garden Beds
- Algebra Walk
- Chocolate Cake
- Newspaper Shapes
- Mushroom Hunt
- Building Views